29th June 2017 (DAY 0) All the Tutorial will be held at the Management Block	VDAT 2017 Program (Tentative)	
Registration (Department of Management Studies) Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 3 LH 3 11:00 AM to 11:15 AM Tea Break Tutorial 2 LH 2 Tutorial 2 LH 2 Tutorial 3 LH 3 11:15 AM to 12:45 PM Tutorial 2 LH 2 Tutorial 3 LH 3 12:45 PM to 02:00 PM Lunch Break Tutorial 4 LH 1 Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 04:00 PM to 05:30 PM Registration (Department of Management Studies) Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 3 LH 3 Lunch Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 Tutorial 6 LH 3		
Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 3 LH 3 11:00 AM to 11:15 AM Tea Break Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 3 LH 3 11:15 AM to 12:45 PM Tutorial 2 LH 2 Tutorial 3 LH 3 12:45 PM to 02:00 PM Lunch Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 03:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 04:00 PM to 05:30 PM Tutorial 5 LH 2 Tutorial 6 LH 3	Time	Event
Tutorial 2 LH 2 Tutorial 3 LH 3	08:00 AM to 09:30 AM	Registration (Department of Management Studies)
Tutorial 3 LH 3 11:00 AM to 11:15 AM Tea Break Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 3 LH 3 12:45 PM to 02:00 PM Lunch Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 03:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 10:400 PM to 05:30 PM Tutorial 6 LH 3		Tutorial 1 LH 1
Tea Break	09:30 AM to 11:00 AM	Tutorial 2 LH 2
Tutorial 1 LH 1 Tutorial 2 LH 2 Tutorial 3 LH 3 12:45 PM to 02:00 PM Lunch Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 03:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3		Tutorial 3 LH 3
Tutorial 2 LH 2 Tutorial 3 LH 3 12:45 PM to 02:00 PM Lunch Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 03:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 Tutorial 6 LH 3 Tutorial 6 LH 1	11:00 AM to 11:15 AM	Tea Break
Tutorial 3 LH 3 12:45 PM to 02:00 PM Lunch Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 03:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3	11:15 AM to 12:45 PM	Tutorial 1 LH 1
12:45 PM to 02:00 PM		Tutorial 2 LH 2
Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 03:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3 Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 5 LH 2 Tutorial 5 LH 2 Tutorial 6 LH 3		Tutorial 3 LH 3
702:15 PM to 03:45 PM Tutorial 5 LH 2 Tutorial 6 LH 3 703:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3	12:45 PM to 02:00 PM	Lunch Break
Tutorial 6 LH 3 D3:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3		Tutorial 4 LH 1
703:45 PM to 04:00 PM Tea Break Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3	02:15 PM to 03:45 PM	Tutorial 5 LH 2
Tutorial 4 LH 1 Tutorial 5 LH 2 Tutorial 6 LH 3		Tutorial 6 LH 3
04:00 PM to 05:30 PM Tutorial 5 LH 2 Tutorial 6 LH 3	03:45 PM to 04:00 PM	Tea Break
Tutorial 6 LH 3	04:00 PM to 05:30 PM	Tutorial 4 LH 1
		Tutorial 5 LH 2
		Tutorial 6 LH 3
Dinner Dinner	07.30 PM	Dinner

Tutorial 1: Achieving the Best STA Accuracy for Advanced Nodes, Gauri Sankar Malla, Synopsys India Pvt. Ltd., India

Tutorial 2: Computational Lithography for Adavanced CMOS Nodes, N.R.Mohapatra, IIT Gandhinagar and Mr. Pardeep Kumar, Global Foundaries, Bangalore

Tutorial 3: Circuit and System Design Issues for IoT Sensor Node, M.Hasan, AMU

Tutorial 4: Design of Modern mm-Wave Transmitters and Power Amplifiers in Silicon and FD SoI CMOS, K. Bhattacharya, Amrita University, Coimbatore

Tutorial 5: Transaction Level Modelling with System C For System Level Design, Nishit Gupta, Microelectronics Development Division, Ministry of Communication and Information Technoogy, Govt. of India and Deepak Jharodia, ST Microelectronics

Tutorial 6: Advanced Analog Design, HS Jatana and Ashutosh Yadav, SCL Chandigarh, India

	VDAT 2017 Program (Tentative) 30th June 2017 (Day-1)	
	Registration (MB Foyer + MAC)	
Time	Event	
08:00 AM - 9:15 AM	Breakfast (Ravindra Bhawan Lounge)	
09.00 AM - 9.45 AM	Opening Ceremony (MAC) (Chief Guest: Dr.V.K.Saraswat, Padma Shri, Padma Bhushan, Member NITI Aayog)	
9.45 AM - 10:30 AM	Plenary – I (MAC) (Prof. Jagadesh Kumar, Vice-Chancellor, JNU)	
10:30 AM - 11.00 AM	High Tea (Mac Lounge)	
11 15 AM O1 15 DM	D1-IA, 5 Papers (4 long + 1 short Presentation) Digital Design	
11.15 AM - 01.15 PM	D1-IB, 5 Papers (4 long + 1 short Presentation) Analog/Mixed Signal	
01:15 PM to 02:15 PM	Lunch Break (Ravindra Bhawan Lounge)	
02:15 PM to 03:00 PM	Invited Speaker – 1 (Prof. P.Chakrabarti, IIT-BHU)	
03:00 PM to 3:45 PM	Invited Speaker – 2 (Dr Devesh, Dwivedi, Global Foundaries, Bangalore)	
3:45 PM to 4:20PM	Poster Presentation (2 minutes per poster)	
04:20 PM to 4:45 PM	Coffee break	
04:45 PM to 06:45 PM	D1-II A VLSI Testing	
	D1-II B Devices and Technology-I	
8:30 PM to 9:15 PM	Banquet Talk (MAC Auditorium)	
09.15 PM	Banquet (Ravindra Bhawan Lounge)	

Posters (2 Minutes Each) to be continued on DAY 2 also.		
35, 45, 54, 58, 77, 102, 106, 114, 121, 128, 143, 163, 173, 193, 202, 231, 264, 268.		

Digital Design	
PID 213: VLSI Implementation of Throughput Efficient Distributed Arithmetic Based LMS Adaptive Filter Mohd Tasleem Khan and Shaik Ahamed.	PID 76: Flexible Composite Galois Field GF ((2^m)^ 2) Multiplier Designs Mohamed Asan Basiri M and Sandeep K Shukla.
PID 100: Estimating the Maximum Propagation Delay of 4-bit Ripple Carry Adder using Reduced Input Transitions Manan Mewada, Mazad Zaveri and Anurag Lakhlani.	PID 246: Realization of Multiplier using Delay Efficient Cyclic Redundant Adder Dheepika K, Jevasankari K S, Vippin Chandhar and Binsu Kailath.
PID 112(S): Fast Architecture of Modular Inversion using Itoh-Tsujii	
Algorithm Pravin Zode, Abdus Samad and Raghavendra Deshmukh.	
Analog/Mixed Signal	
PID 37: Low Voltage, Low Power Transconductor for Low Frequency Gm -C Filters Hanumantha Rao G. and Rekha S.	PID 116: An improved highly efficient low input voltage charge pump circuit. Naresh Kumar, Raja Hari Gudlavalleti and Subash Chandra Bose.
PID 169: Characterization and compensation circuitry for piezo-	
resistive pressure sensor to accommodate temperature induced	PID 98: A Calibration Technique for Current Steering DACs - Self Calibration with Capacitor
variation	storage.
Santosh Manabala, Anjli Bansal, Jitendra Mishra, Kanhu Charan Behera and Subash Chandra Bose.	Pallavi Darji and Chetan Parikh

Pseudo-BIST: A Novel Technique for SAR-ADC Testing th Gupta, Dr. Sujay Deb, Vikrant Singh, V N Srinivasan, Manish Sharma and Sabyasachi S: A Cost Effective Technique for Diagnosis of Scan Chain Faults ev Ahlawat, Darshit Vaghani, Jaynarayan Tudu and Ashok Suhag.
th Gupta, Dr. Sujay Deb, Vikrant Singh, V N Srinivasan, Manish Sharma and Sabyasachi 5: A Cost Effective Technique for Diagnosis of Scan Chain Faults
th Gupta, Dr. Sujay Deb, Vikrant Singh, V N Srinivasan, Manish Sharma and Sabyasachi 5: A Cost Effective Technique for Diagnosis of Scan Chain Faults
th Gupta, Dr. Sujay Deb, Vikrant Singh, V N Srinivasan, Manish Sharma and Sabyasachi 5: A Cost Effective Technique for Diagnosis of Scan Chain Faults
Low-Power Sequential Circuit Design using Work-function Engineered FinFETs
Soni, Abhijit Umap and Nihar R. Mohapatra.
A Analysis of Electrolists to relate a Comition destant remail Electrolists and related to
4: Analysis of Electrolyte-Insulator-Semiconductor Tunnel Field-Effect Transistor as pH
ngh, Rakhi Narang, Manoj Saxena and Mridula Gupta.
i

VDAT 2017 Program (Tentative)	
1st July 2017 (Day-2) (Management Block)	
Registration (MB Foyer)	
Time	Event
07:30 AM - 8:45 AM	Breakfast (Ravindra Bhawan Lounge)
09.00 AM - 9:45 AM	Invited Speaker - 3 (Prof Maryam Shojaei, IIT-Bombay)
9.45 AM - 10.30 AM	Invited Speaker - 4 (Dr Sudarshan Kumar, HSMC)
10:30 AM - 10.45 AM	Tea Break (Management Block Central Lawn)
10.45 AM - 12.45 PM	D2-I A, VLSI Architectures
	D2-I B, Emerging Technologies & Memory
12:45 PM to 01:45 PM	Lunch Break (Ravindra Bhawan Lounge)
01:45 PM to 03:45 PM	D2-II A, Devices and Technology-II
	D2-II B, System Design
3:45 PM to 4:15 PM	Poster Display and Tea Break
04:15 PM to 05:30 PM	Panel Discussion (VLSI Education)
05:30 PM to 08:30 PM	Haridwar Visit Tentative (Availability of at least 30 participants)
09.00 PM -10.00 PM	Banquet Dinner (Community Center)

VLSI Architectures	
PID 14: Energy-Efficient VLSI Architecture & Implementation of Bi- Modal Multi-Banked Register-File Organization	PID 115: Performance-Enhanced d ² -LBDR for 2D Mesh Network-on-Chip Anugrah Jain, Vijay Laxmi, Meenakshi Tripathi, Manoj Singh Gaur and Rimpy Bishnoi.
Sumanth Gudaparthi and Rahul Shrestha. PID 233: ACAM: Application Aware Adaptive Cache Management for Shared LLC Sujit Kr Mahto and Newton Singh.	PID 85(S): Adaptive Packet Throttling Technique for Congestion Management in Mesh NoCs N. S. Aswathy, R. S. Reshma Raj, Abhijit Das, John Jose and V. R. Josna.
PID 131(S): Defeating Hatch - Building Malicious IP Cores Anshu Bhardwaj and Subir Kumar Roy.	
Emerging Technologies & Memory	
PID 207: Modeling and Analysis of Transient Heat for 3D IC Subhajit Chatterjee, Surajit Roy, Chandan Giri and Hafizur Rahaman.	PID 235: Low Write Energy STT-MRAM Cell using 2T- Hybrid Tunnel FETs exploiting the Steep Slope and Ambipolar Characteristics Sudha Vani Yamani, Usha Rani Nelakuditi and Ramesh Vaddi.
PID 194: Memory Efficient Fractal-SPIHT based Hybrid Image Encoder Mamata Panigrahy, Indrajit Chakrabarti, Anindya Sundar Dhar, Nirmal Behera and B Vandana.	PID 274: Metal-Oxide Nanostructures designed by Glancing Angle Deposition Technique and its applications on Sensors and Optoelectronic Devices Divya Singh.
PID 241(S): Enhancing Retention Voltage for SRAM Suprateek Shukla, Ankit Rehani and Sujay Deb.	

]
Devices and Technology – II	
PID 160: Delay and Frequency Investigations in Coupled MLGNR Interconnects Manish Joshi, Koduri Teja, Ashish Singh and Rohit Dhiman.	PID 165: LISOCHIN: An NBTI Degradation Monitoring Sensor for Reliable CMOS Circuits Ambika Prasad Shah, Nandakishor Yadav and Santosh Kumar Vishvakarma.
PID 168: Performance Analysis of OLED with Hole Block Layer and Impact of Multiple Hole Block Layer Shubham Negi, Poornima Mittal and Brijesh Kumar.	PID 192: A Cost Effective Technique for Diagnosis of Scan Chain Faults Satyadev Ahlawat, Darshit Vaghani, Jaynarayan Tudu and Ashok Suhag.
PID 174: Improved Gate Modulation in Tunnel Field Effect Transistors with non-rectangular tapered Y-Gate geometry Rakhi Narang, Mridula Gupta and Manoj Saxena.	PID 252(S): A 10T Subthreshold SRAM Cell with Minimal Bitline Switching for Ultra-low Power Applications Swaati and Bishnu Prasad Das.
System Design	
PID 133: A High Speed KECCAK Coprocessor for Partitioned NSP Architecture on FPGA Platform Rourab Paul and Sandeep Kumar Shukla.	PID 190: New Energy Efficient Reconfigurable FIR Filter Architecture And Its FPGA Implementation Naushad Ali and Bharat Garg.
PID 240: FPGA-based Smart Camera System for Real-time Automated Video Surveillance Sanjay Singh, Sumeet Saurav, Ravi Saini, Atanendu S. Mandal and Santanu Chaudhury.	PID 139: Effectiveness of High Permittivity Spacer for Underlap regions of Wavy-Junctionless FinFET at 22 nm node and Scaling Short Channel Effects B Vandana, J K Das, S K Mohapatra and B K Kaushik.
PID 278(S): A Custom Designed RISC-V ISA Compatible Processor for SoC Kavya Sharat, Sumeet Bandishte, Kuruvilla Varghese and Amrutur Bharadwaj.	PID 166: Design and Implementation of Ternary Content Addressable Memory (TCAM) based Hierarchical Motion Estimation for Video Processing Puja Ghosh and P. Rangababu.

VDAT 2017 Program (Tentative)	
2nd July 2017 (Day-3) (Management Block)	
Registration (MB Foyer)	
Time	Event
07:30 AM - 8:30 AM	Breakfast (Ravindra Bhawan Lounge)
09.00 AM - 11:00 AM	D3-I A, Low Power Design & test
	D3-I B, RF Circuits
11.30 AM - 11.15 AM	Tea Break (Management Block Central Lawn)
11:15 AM - 12:00 Noon	Invited Speaker – 5 (Mr. Subhasish, Cadence)
12.00 Noon - 12.45 PM	Invited Speaker – 6 (Prof. Masahiro Fujita, Tokyo University)
01:30 PM - 2:15 PM	Lunch Break
02:15 PM to 04:15 PM	D3-II A, Architecture and CAD
	D3-II B, Design Verification
04:15 PM to 04:45 PM	Valedictory Ceremony (MAC Auditorium)

Low Power Design & Test	
PID 22: An Efficient Timing and Clock Tree Aware Placement Flow with Multibit Flip-Flops for Power Reduction Jasmine Kaur Gulati, Bhanu Prakash and Sumit Darak.	PID 266: On Generation of Delay Test with Capture Power Safety Rohini Gulve and Nihar Hage.
PID 222: Primitive Instantiation based Fault Localization Circuitry for High Performance FPGA Designs Ayan Palchaudhuri and Anindya Sundar Dhar.	
RF Circuits	
PID 47: A 10MHz, 42ppm/, 69 μW PVT Compensated Latch Based Oscillator for PCM Vivek Tyagi, Mohammad S.Hashmi, Ganesh Raj and Vikas Rana.	PID 52: A 1.8V Gain Enhanced Fully Differential Doubly-Recycled Cascode OTA with 100dB gain 200MHz UGB in CMOS Antaryami Panigrahi and Abhipsa Parhi.
PID 88: A Low Power, Frequency-to-Digital Converter CMOS Temperature Sensor in 65 nm Process Mudasir Bashir, Patri Sreehari and K S R Krishna Prasad.	PID 105: Design & Development of HighSpeed LVDS Receiver with cold-spare feature in SCL's 0.18um CMOS Process Munish Malik, Ajay Kumar and H.S Jatana.
Architecture and CAD	
PID 66: Fast FPGA Placement Using Analytical Optimization Sameer Pawanekar and Dr. Gaurav Trivedi.	PID 67: Analytical Partitioning : Improvement over FM Sameer Pawanekar and Dr. Gaurav Trivedi.
PID 89: A Dependability Preserving Fluid-level Synthesis for Reconfigurable Droplet-based Microfluidic Biochips Arpan Chakraborty, Piyali Datta, Debasis Dhal and Rajat Pal.	PID 159: Splitting and Transport of a Droplet with no external actuation force for Lab on Chip Devices T Pravinraj and Rajendra Patrikar.

PID 192: A 36nW Power Managment Unit for Solar Energy Harvesters using 0.18um CMOS Purvi Patel, Biswajit Mishra and Dipankar Nagchoudhury. Design Verification	
PID 30: A Formal Perspective on Effective Post-silicon Debug and Trace Signal Selection Binod Kumar, Kanad Basu, Ankit Jindal, Braiesh Pandey and Masahiro	PID 41: Translation Validation of Loop Invariant Code Optimizations Involving False Computations Ramanuj Chouksey, Chandan Karfa and Purandar Bhaduri.
PID 197: A Framework for Automated Feature Based Mixed-Signal Equivalence Checking Antara Ain, Sayandeep Sanyal and Pallab Dasgupta.	PID 239: xMAS Based Accurate Modeling and Progress Verification of NoCs Surajit Das, Santosh Biswas and Chandan Karfa.