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Abstract: The present study evaluated the impact of climate change on runoff from the Nuranang 

watershed. HadCM3 model had been employed for emission scenarios of A2 and B2. The downscaled 

maximum, minimum temperatures, and daily precipitation using SDSM for the baseline (1979–2009) 

and future time period, i.e., 2011–2040 (2020s), 2041–2070 (2050s), and 2071–2099 (2080s) were 

computed and compared. The projected change in maximum temperature (Tmax) and minimum 

temperature (Tmin) showed an increasing trend in the future years under A2 and B2 scenarios. Under 

both the scenarios A2 and B2, the PA (average precipitation) were found to be decreasing in 2050s 

compared to 2020s, then from 2050s, it increased in 2080s. The predicted changes in total runoff as 

computed using SDSRM were observed as -0.81%, -3.22%, and 21.21% under A2 scenario and 

7.46%, -4.27%, and 15.20% under B2 scenario for the future years 2020s, 2050s, and 2080s, 

respectively.  
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1. Introduction 

 

Climate change is a serious global environmental concern. IPCC (2014) has reported that the 

globally averaged combined land and ocean surface temperature showed a warming of 0.85 

°C over the period 1880 to 2012. The annual mean temperature is reported to be increased by 

0.01 °C per year in the eastern Himalayas (Shrestha and Devkota, 2010). Runoff from snow 

covered area is considerably different from exposed land as, after rainfall, the runoff from 

exposed land contributes immediately as compared to snow covered area, where the snow 

needs to ripe before it melts and contributes to stream flow. Accurate estimation of the 

volume of water stored in the snow pack and its rate of release is essential to predict the flow 

during the snowmelt period (Raghunath, 2006). In order to compute climate change in the 

snow dominated watershed, it is essential to stimulate snowmelt flow from precipitation and 

temperature data derived from General Circulation Models (GCM) outputs corresponding to 

the specific climate change scenarios, using a suitable hydrological model. However, the 

spatial resolutions of GCMs are usually quite coarse (hundred kilometers) which results in 

the loss of regional and local details of the climate that are influenced by spatial 

heterogeneities missing from these models (Schubert and Sellers, 1997). Therefore, spatial 

downscaling methods can convert the GCM outputs into at least a reliable daily rainfall and 

temperature time series at the scale of the watershed for which the hydrological impact is 

going to be investigated. The statistical model that is very popular in GCM downscaling is 

Statistical Downscaling Model (SDSM) developed by Wilby and Wilks (1999) and Wilby et 

al. (2002). Many studies (Wilby et al., 1998; Harpam and Wilby, 2005; Dibike and Coulibaly, 

2005; Fowler et al., 2007) have suggested that SDSM is simple and easy to handle and thus 

have been widely used.  
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The assessment of hydrologic response to climate change is required in watershed 

management and planning to protect water resources and environment equality. In the recent 

years, several hydrological models have been used for assessment of impacts of climate 

change on hydrological processes. Liu et al., 2011 calibrated and validated semi distributed 

hydrological model (SWAT) to study the impact of climate change in streamflow in the 

Yellow river basin. Using the outputs from global circulation model (HadCM3), SDSM and a 

combination of “bilinear-interpolation and delta” were applied to generate daily time series of 

temperature and precipitation (1961–2099). The generated data was integrated to simulate 

streamflow under current and future climate conditions. Kabiri et al., 2015 provided 

downscaled meteorological variables corresponding to the Hadley Centre Third Generation-

GCM model for emission scenarios A2 and B2 for the period 2001–2100 as input using 

SDSM and calibrated and validated Hydrologic Engineering Center’s Hydrologic Modeling 

System (HEC-HMS) hydrological model to simulate the corresponding future streamflow 

changes in the Klang watershed in Malaysia. 

The present study aims at assessing the impacts of potential future climatic changes on the 

hydrology of the catchment area of Nuranang watershed situated at Tawang district of 

Arunachal Pradesh, India. In this paper, the degree day model: Spatially Distributed 

Snowmelt Runoff Model (SDSRM) was selected to simulate snowmelt runoff of the study 

area. A downscaling of the meteorological variables obtained as output from the Hadley 

Centre Coupled Model version 3 (HadCM3) GCM for Special Report on Emissions Scenarios 

(SRES) A2 and B2 scenarios was performed using SDSM, a regression-based downscaling 

tool. The downscaled meteorological variables were then incorporated to the present 

observed data to evaluate the changes in runoff under the projected future climate.  

 

2. Study Area and Methods 

Study area 

Nunarang watershed located in Tawang district of Arunachal Pradesh, India was selected as 

the study site. It has an area of 53 km2 and its map is shown in Fig. 1. The Nuranang river 

originates from Sela lake and joins Tawang river as Nuranang fall at Jang. The altitude of the 

Sela Lake is 4,211 m above mean sea level (MSL) and it lies at 27° 30' 15" N and 92° 06' 16" 

E. The Central Water Commission (CWC) discharge site at RA III, Jang (27° 33' 01" N and 

92° 01' 13" E) (Fig. 1) was selected as the outlet point with an elevation of 3,459 m above 

MSL. Elevation of the watershed ranges from 3,459 to 4,892 m above MSL with an average 

slope of 51%. At upper elevations, climate is alpine and at lower elevations, it is temperate. 

Latitude ranges from 27° 30' to 27° 35' N, whereas longitude ranges from 92° 00' to 92° 07' 

E. Having an average annual precipitation of 1,139 mm, monsoon season stretches from May 

to September. Snowfall starts from late October and ends in March. Melting of snow starts 

from February and completely depletes by early June. Snow accumulation and ablation 

periods vary with years. The entire watershed is dominated by seasonal snow cover. 
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Fig. 1: Nuranang watershed and its gauging site  

Data used 

Meteorological and hydrological data 

The meteorological and hydrological data for Nurarang watershed from 2004, 2005, 2008 and 

2009 measured at CWC discharge site at RA-III, Tawang district were collected from CWC 

office, Itanagar, Arunachal Pradesh, India. 

 

Satellite and other data 

The list of satellite and other data required for the study is give n in Table 1. 

 Table 1 List of data acquired for the present study 

Sl. 

No. 
Parameters Type Source 

1. Snow cover (500 m resolution) Spatial MODIS 

(http://reverb.echo.nasa.gov/

reverb/) 

2. Maximum and minimum air 

temperatures (Tmax and Tmin) 

Time series CWC 

3. Precipitation (P) Time series CWC 

4. Latitude Spatial (Static) Generated 

5. Longitude Spatial (Static) Generated 

6. Critical temperature (TCRIT) Time series (Static)  Calibrated 

7. DEM Spatial (Static) ASTER  

Outlet point 
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Pre-processing of data  

The study area is in the eastern part of Arunachal Pradesh which falls within the bounding 

box 91–98° E and 26–30° N and it is in h26v06 tiles. Native MODIS data files are stored in 

HDF-EOS, therefore, MODIS Reprojection Tool (MRT) (Version 4.1) was used for 

converting downloaded data from HDF-EOS to GeoTIFF format for GIS software. Using 

ARC MAP 2010, the MODIS snow cover and albedo geotiff data were reprojected to 

Universal Transverse Mercator (UTM) projection with geographic coordinate system of 

GCS_WGS_1984. DEM raster downloaded from ASTER was resample using ARC MAP 

2010 in order to obtained each pixel of same resolution with the other MODIS data layer. By 

selecting the outlet point, Nuranang basin was delineated from DEM. The basin was then 

represented by the number of grids or pixels of equal size. Then, the data was clipped and 

converted into ASCII format using ARC MAP 2010. 

The downloaded observed data for operation of SDSM were in numerical control file format 

(nc) so these data were converted to geotiff format using Qgis software which was 

downloaded from http://www.qgis.org/en/site/. The resultant raster images were clipped 

using ArcMap. The extraction of time series for temperature (maximum and minimum) and 

precipitation were also done using Arcmap.  

 

Hydrological Modelling using SDSRM 

 

The spatially distributed snowmelt runoff model (SDSRM), developed by Department of 

Agricultural Engineering, NERIST (Itanagar), is based on temperature index approach which 

equates the total daily melt to degree day factor times the temperature difference between the 

mean daily temperature and a base temperature. Temperature index model assumes that there 

is a linear empirical relationship between air temperature and rate of snowmelt.  Two 

approaches are used in SDSRM to determined snowmelt runoff and they are Temperature 

index algorithm and modified Temperature index algorithm or Radiation-temperature index 

8. Mean temperature Spatial Generated from Tmax and 

Tmin 

9. Lapse rate Constant Bandyopadhyay et al. (2014) 

10. Albedo (500 m resolution) Spatial MODIS 

(http://reverb.echo.nasa.gov/

) 

11. LULC Spatial (Static) Space Application Center 

(SAC) 

12. Proportion of rain to snow in last 

storm 

Spatial  Generated from TCRIT 

13. Days since cessation of storm Spatial Generated from Precipitation 

14. Day of year Time series Generated from date 

http://www.qgis.org/en/site/
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algorithm. In the present study, temperature index algorithm was used. Snow albedo, 

fractional snow cover, daily maximum temperature, daily minimum temperature, daily 

precipitation, latitude, longitude, LULC, and DEM are the minimum input layers required for 

temperature index algorithm. In addition to these layers, incoming shortwave solar radiation 

is required for modified temperature index algorithm. Runoff coefficient for snowmelt (cS), 

runoff coefficient for rain (cR), lapse rate and critical temperature (TCRIT) are the input 

coefficient required in the model. The parameter such as proportion of rain to snow in last 

storm, days since the cessation of storm, mean temperature and day of year are calculated 

within the model. The model gives pixel-wise output of Snow Density, Snow Depth, Snow 

water Equivalent, Degree Day, Net Solar radiation, Evaporation, SCA curve, Hypsometric  

curve, Snow Melt Depth, Rain-induced runoff, Snow-induce runoff, Total runoff, Total Loss 

and Infiltration.  

Calibration of the model was done for depletion period of 2004 and 2005, while the 

validation was performed for the depletion period of 2008 and 2009.  

 

Statistical Downscaling using SDSM 4.2.9 

Statistical DownScaling Model (SDSM) 4.2.9 is a Windows based decision support tool that 

establishes empirical relationships between GCM-resolution climate variables and local 

climate. Quality control check in SDSM is perform on the observed predictands, i.e., 

precipitation (P) and temperatures (Tmax and Tmin) to identify errors and missing records in the 

data. In the screen variables process, the predictors were selected. SDSM performs three 

tasks: seasonal correlation analysis, partial correlation analysis, and scatterplots. The 

significance level was used to test the significance of predictor-predictand correlations. 

SDSM also reports partial correlations between the selected predictors and the predictand. 

The result screen gives two values, i.e., partial r (partial correlation) and p (probability). Only 

those predictors having values of partial r within -1 to 1 and p value near to 0 are chosen. 

From Scatter menu, inter-variable behaviour for specified sub-periods (annual, seasonal or 

monthly) was visually inspected. The appropriate predictor variables that had strong 

correlation with the predictand variable were identified. 

The Calibrate Model takes up each of the predictand and a set of probable predictors and 

computes the parameters of multiple regression equations by using an optimization algorithm 

(ordinary least squares). For model calibration, the period from 1979–1995 was chosen. The 

given period was chosen for calibration as both the observed predictands and NCEP 

predictors were available. In model calibration, initially, the potential predictors which had 

shown the best correlations with precipitation and temperatures was introduced to the 

downscaling model. Once the explained variance and SE values obtained are found 

satisfactory, the regression model is finalized. The validation process followed the model 

calibration. The same parameters used during the calibration process that explains the 

statistical agreement between the observed and simulated data were used for validation. The 

period from 1996–2001 was used to validate the performance of the model. The performance 

of SDSM on validating data was evaluated based on the coefficient of determination (R2) and 
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standard error of estimate (SEE). The Scenario Generator operation was applied for both the 

A2 and B2 emission scenarios from the HadCM3 experiment for the period 1961–2099 to 

predict future climate forcing. The A2 and B2 emission scenarios were downloaded for the 

period from 1969–2099. The maximum and minimum temperatures and daily precipitation 

for the baseline (1979–2009) and future time slices, i.e., 2011–2040 (2020s), 2041–2070 

(2050s), and 2071–2099 (2080s) were computed and compared. 

Assessment of impacts of climate change using the hydrological model 

The downscaled projected values for the future scenarios, i.e., 2011–2040 (2020s), 2041–

2070 (2050s), 2071–2097 (2080s) including the baseline period (1979–2009) under A2 and 

B2 scenarios for maximum temperature, minimum temperatures and precipitation were 

derived using the Scenario Generator of SDSM. The scenario generator of SDSM gives 20 

ensembles of daily temperatures (maximum and minimum) and precipitation values for the 

baseline period and all the future time slices under A2 and B2 scenarios. Monthly average 

temperatures (maximum and minimum) and precipitation values of all the time slices for the 

two scenarios were calculated from the daily values. The month-wise change in °C for 

maximum temperature and minimum temperature and change in % for precipitation for each 

future time slices corresponding to the baseline period were determined. From this, the 

annual average of the month-wise changed values of the maximum temperature (Tmax), 

minimum temperature (Tmin) and precipitation (P) for the time slices 2020s, 2050s and 2080s 

under both A2 and B2 emission scenarios were determined for the 20 ensembles of SDSM. 

The maximum, minimum and mean value from the 20 ensembles of annually averaged 

month-wise changed values of the temperatures (maximum and minimum) and precipitation 

were determined. The maximum, minimum and average change of Tmax (°C) were denoted as 

TMx, TMn and TA, respectively. The maximum, minimum and average change of Tmin (°C) 

were denoted as tMx, tMn and tA, respectively. Also, the maximum, minimum and average 

change of P (%) were denoted as PMx, PMn and PA, respectively. Thus, 27 different 

combinations of TMx, TMn, TA, tMx, tMn, tA, PMx, PMn and PA were established for the 

future time slices 2020s, 2050s and 2080s under both A2 and B2 scenarios as shown in Table 

2. 

The changed values in Tmax, Tmin and P under the A2 and B2 scenarios were incorporated 

with the daily observed average maximum temperature, minimum temperature and 

precipitation values of the simulation years 2004, 2005, 2008 and 2009. Considering these 

changed values, runoff from the Nuranang watershed were simulated using calibrated and 

parameterized SDSRM for all 27 combinations for each of the six cases (three future periods 

2020s, 2050s and 2080s, and two scenarios A2 and B2). 
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Table 2 Different combinations of future changes in temperature and precipitation 

A2 2020 A2 2050 A2 2080 B2 2020 B2 2050 B2 2080 

A2TMxtMxPMx20 A2TMxtMxPMx50 A2TMxtMxPMx80 B2TMxtMxPMx20 B2TMxtMxPMx50 B2TMxtMxPMx80 

A2TMxtMxPMn20 A2TMxtMxPMn50 A2TMxtMxPMn80 B2TMxtMxPMn20 B2TMxtMxPMn50 B2TMxtMxPMn80 

A2TMxtMxPA20 A2TMxtMxPA50 A2TMxtMxPA80 B2TMxtMxPA20 B2TMxtMxPA50 B2TMxtMxPA80 

A2TMxtMnPMx20 A2TMxtMnPMx50 A2TMxtMnPMx80 B2TMxtMnPMx20 B2TMxtMnPMx50 B2TMxtMnPMx80 

A2TMxtMnPMn20 A2TMxtMnPMn50 A2TMxtMnPMn80 B2TMxtMnPMn20 B2TMxtMnPMn50 B2TMxtMnPMn80 

A2TMxtMnPA20 A2TMxtMnPA50 A2TMxtMnPA80 B2TMxtMnPA20 B2TMxtMnPA50 B2TMxtMnPA80 

A2TMxtAPMx20 A2TMxtAPMx50 A2TMxtAPMx80 B2TMxtAPMx20 B2TMxtAPMx50 B2TMxtAPMx80 

A2TMxtAPMn20 A2TMxtAPMn50 A2TMxtAPMn80 B2TMxtAPMn20 B2TMxtAPMn50 B2TMxtAPMn80 

A2TMxtAPA20 A2TMxtAPA50 A2TMxtAPA80 B2TMxtAPA20 B2TMxtAPA50 B2TMxtAPA80 

A2TMntMxPMx20 A2TMntMxPMx50 A2TMntMxPMx80 B2TMntMxPMx20 B2TMntMxPMx50 B2TMntMxPMx80 

A2TMntMxPMn20 A2TMntMxPMn50 A2TMntMxPMn80 B2TMntMxPMn20 B2TMntMxPMn50 B2TMntMxPMn80 

A2TMntMxPA20 A2TMntMxPA50 A2TMntMxPA80 B2TMntMxPA20 B2TMntMxPA50 B2TMntMxPA80 

A2TMntMnPMx20 A2TMntMnPMx50 A2TMntMnPMx80 B2TMntMnPMx20 B2TMntMnPMx50 B2TMntMnPMx80 

A2TMntMnPMn20 A2TMntMnPMn50 A2TMntMnPMn80 B2TMntMnPMn20 B2TMntMnPMn50 B2TMntMnPMn80 

A2TMntMnPA20 A2TMntMnPA50 A2TMntMnPA80 B2TMntMnPA20 B2TMntMnPA50 B2TMntMnPA80 

A2TMntAPMx20 A2TMntAPMx50 A2TMntAPMx80 B2TMntAPMx20 B2TMntAPMx50 B2TMntAPMx80 

A2TMntAPMn20 A2TMntAPMn50 A2TMntAPMn80 B2TMntAPMn20 B2TMntAPMn50 B2TMntAPMn80 

A2TMntAPA20 A2TMntAPA50 A2TMntAPA80 B2TMntAPA20 B2TMntAPA50 B2TMntAPA80 

A2TAtMxPMx20 A2TAtMxPMx50 A2TAtMxPMx80 B2TAtMxPMx20 B2TAtMxPMx50 B2TAtMxPMx80 

A2TAtMxPMn20 A2TAtMxPMn50 A2TAtMxPMn80 B2TAtMxPMn20 B2TAtMxPMn50 B2TAtMxPMn80 

A2TAtMxPA20 A2TAtMxPA50 A2TAtMxPA80 B2TAtMxPA20 B2TAtMxPA50 B2TAtMxPA80 

A2TAtMnPMx20 A2TAtMnPMx50 A2TAtMnPMx80 B2TAtMnPMx20 B2TAtMnPMx50 B2TAtMnPMx80 

A2TAtMnPMn20 A2TAtMnPMn50 A2TAtMnPMn80 B2TAtMnPMn20 B2TAtMnPMn50 B2TAtMnPMn80 

A2TAtMnPA20 A2TAtMnPA50 A2TAtMnPA80 B2TAtMnPA20 B2TAtMnPA50 B2TAtMnPA80 

A2TAtAPMx20 A2TAtAPMx50 A2TAtAPMx80 B2TAtAPMx20 B2TAtAPMx50 B2TAtAPMx80 

A2TAtAPMn20 A2TAtAPMn50 A2TAtAPMn80 B2TAtAPMn20 B2TAtAPMn50 B2TAtAPMn80 

A2TAtAPA20 A2TAtAPA50 A2TAtAPA80 B2TAtAPA20 B2TAtAPA50 B2TAtAPA80 

 

The averaged observed runoff for the Nuranang watershed for the simulation years 2004, 

2005, 2008, and 2009 were considered as the baseline flow. Taking the same simulation 

period (17thApril-21st August), daily average runoff for the years 2004, 2005, 2008, and 2009, 

and for each of the 27×6 combinations were determined and percentage change in runoff 

with respect to the present runoff or baseline flow were estimated. 

 

Performance Indicators 

 

To evaluate the performance of SDSRM, predicted discharges were compared with the 

observed ones. The performance can be visually interpreted by plotting the simulated and 

observed data simultaneously on a single plot.  

Two dimensionless statistical performance criteria, viz., modelling efficiency (ME) and 

coefficient of residual mass (CRM) were used as: 
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                                                                                            (2) 

where, 𝑃𝑣,𝑖 is the predicted or simulated value; 𝑂𝑣,𝑖 is the observed value; 𝑂̅𝑣 is the average 

observed value and 𝑛𝑑 is the number of data used for evaluation. 

For a perfect model, the value of ME is 1.0, i.e., when the simulated values match perfectly 

with the observed ones. A lower value (close to zero) of ME indicates poor performance of 

the model and a negative value indicates that the model-simulated values are worse than 

simply using observed mean. CRM indicates the overall under- or over-estimation of the 

observed value. For a perfect model, the value of CRM is zero. A positive value of CRM 

indicates the tendency of the model to under-estimate, whereas a negative value indicates a 

tendency to over-estimate the observed data. 

To evaluate the performance of SDSM, coefficient of determination (R2) and standard error 

of estimate (SEE) were used. The coefficient of determination (R2) is calculated as below: 

 𝑅2 = [
∑ (𝑂𝑣,𝑖−𝑂̅𝑣) ×(𝑃𝑣,𝑖−𝑃̅𝑣)

𝑛𝑑
𝑖=1

√{∑ (𝑂𝑣,𝑖−𝑂̅𝑣)
2

×(𝑃𝑣,𝑖−𝑃̅𝑣)
2𝑛𝑑

𝑖=1
}
]

2

                    (3) 

The range of values for R2 is 1.0 (best) to 0.0 (worst). The standard error of estimate (SEE) is 

calculated as below: 

𝑆𝐸𝐸 = √
∑ (𝑂𝑣,𝑖−𝑃𝑣,𝑖)

2𝑛𝑑
𝑖=1

𝑛𝑑−1
               (4) 

where, 𝑃̅𝑣 is the average simulated value. 

3. Results and Discussions 

 

Calibration and validation of SDSRM 

Runoff generation of the Nuranang watershed was carried out using the SDSRM. The model 

was calibrated for the depletion period of 2004 (13th April–21st August) and 2005 (17th April–

4th September). Critical temperature and runoff coefficient for snowmelt and rain were 

calibrated to determine the best possible combination of optimal values using the observed 

runoff data for comparing with simulated runoff. The best possible value of TCRIT were 

obtained as 5.0 °C for both the years 2004 and 2005. Better matches were obtained for cR) as 

0.4 and 0.5, and cS as 0.5 and 0.5 for the years 2004 and 2005, respectively. Then, the model 

was simulated using the respective best possible set of calibration parameters for each 

calibration year. Validation of SDSRM was performed for the years 2008 (17th April – 20th 

September) and 2009 (13th April – 23rd September). Using the average values of calibration 
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parameters, the model was validated. Table 3 shows that the modelling efficiency (ME) and 

coefficient of residual mass (CRM) values for the calibration and validation years. As in both 

the calibration and validation years, ME value is more than 0.6 and CRM is less than 0.2, it 

shows a satisfactory match between observed and predicted runoff. Fig. 2 shows the time 

series plots of observed and predicted runoff for the calibration and validation years.  

 

Table 3: Best parameter sets and performance assessment of SDSRM during calibration and 

validation  

Parameter 
Calibration Years Validation Years 

2004 2005 2008 2009 

TCRIT, °C 5.00 5.00 5.00 5.00 

cR 0.40 0.50 0.45 0.45 

cS 0.50 0.50 0.50 0.50 

ME 0.619 0.736 0.617 0.640 

CRM 0.175 0.074 0.183 0.196 

 

Statistical downscaling of temperature and precipitation 

Initial Screening of Predictor Variables from NCEP 

The predictor 500 hpa geopotential height is found to have maximum correlation in all the 

three predictant viz. maximum temperature, minimum temperature and precipitation.  

 

Calibration and Validation of SDSM 

The data for 1979–1995 were used for calibration and the data for 1996–2001 were used for 

validation. In this study, seasons of a year were divided as Summer (June – August), Autumn 

(September – November), Winter (December – February) and Spring (March – May). The 

performance evaluation of the calibrated model was done using performance indicators ME, 

CRM, R2, and SEE. Table 4 shows the performance of SDSM for the calibration and 

validation period for Tmax, Tmin and precipitation for monthly and seasonal data.  For all the 

predictand, Tmax, Tmin and precipitation, monthly data gave better results than the seasonal 

data in both calibration and validation period. 
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Fig. 2: Time series plots for the calibration and validation years. 

 

(a)   Calibration years                                                    (b) Validation years 

Fig. 3: Time series plots of monthly average runoff for the calibration (a) and validation (b) 

years. 

Table 4: Performance of SDSM for the calibration and validation period for Tmax, Tmin and 

precipitation for monthly and seasonal data 
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Performance 

criteria 
Calibration (1979–1995) Validation (1996–2001) 

 Tmax Tmin Precipitation Tmax Tmin Precipitation 

Monthly       

ME 1.0000 1.0000 0.9999 0.9997 0.9993 0.8555 

CRM 0.0000 0.0000 -0.0107 0.0024 0.0054 0.2186 

SEE 0.0508 0.0481 0.2400 1.3015 2.0307 3.1575 

R2 1.0000 1.0000 0.9992 0.9998 0.9997 0.9327 

Seasonal       

ME 1.0000 1.0000 0.9995 0.9999 0.9998 0.8795 

CRM 0.0000 0.0000 -0.0108 0.0024 0.0053 0.2194 

SEE 0.0241 0.0212 0.1493 1.0512 1.7708 2.5699 

R2 1.0000 1.0000 0.9999 1.0000 0.9999 0.9910 

 

Assessment of impacts of climate change using the hydrological model 

From the 20 generated ensembles of daily temperature (maximum and minimum) from 

SDSM, monthly average values of maximum temperature (Tmax), minimum temperature 

(Tmin) and precipitation (P) for the time periods 2020s, 2050s and 2080s under both A2 and 

B2 emission scenarios were determined. Also, the change in Tmax (°C), Tmin (°C), and P 

(%)for each month for each future time periods corresponding to the baseline period were 

determined. Then, the projected annually averaged change values of the 20 ensembles of of 

Tmax (°C), Tmin (°C), and P (%) with its maximum (Max), minimum (Min) and average 

(Average) value for the time periods 2020s, 2050s and 2080s under A2 and B2 scenarios 

respectively were computed. Table 5 shows the maximum, minimum, and average of the 

projected yearly average change values of Tmax, Tmin, and P for the future time periods 2020s, 

2050s, and 2080s under A2 and B2 scenarios. From this table, it can be observed that both 

TA and tA are found to be increasing with the future time period under A2 and B2 scenarios. 

The TA and tA were found to be maximum in the time period 2080s under A2 scenario with 

3.44 and 3.97 °C increase, respectively; while the minimum TA and tA were found in the 

time period 2020s under B2 scenario with 0.92 and 1.11 °C increase, respectively.  Under 

both the scenarios A2 and B2, the PA were found to be decreasing in the time period 2050s 

compared to 2020s, then from 2050s, it increased in the time period 2080s. The maximum PA 

was observed in the time period 2080s under A2 scenario with 12.49% and the minimum PA 

was observed in the time period 2050s under A2 scenario with -4.63%. The average increase 

in precipitation under A2 scenario was projected to vary from -0.82 to 12.49% and under B2 

scenario from 1.18 to 10.64% considering all the future time periods. 

Altogether 27 different combinations of TMx, TMn, TA, tMx, tMn, tA, PMx, PMn, and PA 

were established for the future periods 2020s, 2050s, and 2080s under A2 and B2 scenarios 

(Table.2). The values of the nine variables TMx, TMn, TA, tMx, tMn, tA, PMx, PMn, and 

PA were applied to the daily average observed Tmax, Tmin, and P values for simulation years 
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2004, 2005, 2008, and 2009. Considering these changed values, runoff from the Nuranang 

watershed was simulated using SDSRM for the 27 combinations for future periods 2020s, 

 

Table 5: Maximum, minimum, and average values of Tmax, Tmin, and P for future periods 

under A2 and B2 scenarios 

  A2 B2 

2020s 2050s 2080s 2020s 2050s 2080s 

Tmax 

(°C) 

 

Max (TMx) 1.17 2.14 3.61 1.02 1.81 2.29 

Min (TMn) 0.88 1.95 3.32 0.79 1.51 2.00 

Average (TA) 1.03 2.05 3.44 0.92 1.69 2.13 

Tmin 

(°C) 

 

Max (tMx) 1.31 2.68 4.09 1.22 1.88 3.04 

Min (tMn) 1.10 2.42 3.87 1.03 1.61 2.81 

Average (tA) 1.20 2.59 3.97 1.11 1.79 2.92 

P 

(%) 

Max (PMx) 5.22 2.79 16.79 8.61 5.78 14.62 

Min (PMn) -10.9 -13.44 6.56 -5.94 -12.12 7.01 

Average (PA) -0.82 -4.63 12.49 1.18 -2.59 10.64 

 

2050s, and 2080s under A2 and B2 scenarios. For the same simulation period (17th April – 

21st August), daily average runoff for years 2004, 2005, 2008, and 2009 were simulated using 

SDSRM and considered as the present runoff for the baseline period. 

For each of the 27 combinations under A2 and B2 scenarios for the future periods 2020s, 

2050s, and 2080s, total runoff simulated from the watershed using SDSRM were compared 

with the present total runoff. Maximum, minimum, and mean runoff volumes were calculated 

from the 27 combinations of total runoff at the watershed outlet. The change in total runoff 

(%) were calculated for each of the 27 combinations for future periods of 2020s, 2050s, and 

2080s under A2 and B2 scenarios, with respect to the baseline values of total runoff. Tables 6 

shows the percent change in total runoff for the 27 combinations for future periods 2020s, 

2050s, and 2080s under A2 and B2 scenarios. From Table 7, it can be observed that in 2020s, 

the mean changes in total runoff are predicted to be -0.81% and 7.46% under A2 and B2 

scenarios, respectively. In 2050s, the predicted mean changes in total runoff were found to be 

-3.22% and -4.27% under A2 and B2 scenarios, respectively. In 2080s, the mean changes in 

total runoff were predicted as 21.21% and 15.20% under A2 and B2 scenarios, respectively. 

Under A2 and B2 scenarios, the changes in total runoff were observed to decrease in the 

future time period 2050s compared to 2020s, then from 2050s, it increased in the future Table 

7 Percentage change in total runoff for the 27 combinations for 2020s, 2050s, and 2080s 

under A2 and B2 scenarios. This same trend was observed in the findings of Mahmood and 

Jia (2016) where they projected the total runoff for the future years over the Jhelum river 

basin of Pakistan and India. The mean values of the predicted total runoff obtained from the 

27 combinations were plotted on monthly basis for the baseline and future periods by taking 

daily averages for A2 and B2 scenarios, as shown in Fig. 4. From this Fig. 4, it can be seen 



Roorkee Water Conclave, 2020  
 

Organized by Indian Institute of Technology Roorkee and National Institute of Hydrology, 

Roorkee during February 26-28, 2020 
 
 

that under both A2 and B2 scenarios, the mean predicted runoff in all the future periods are 

highest and lowest in April and May, respectively. Under A2 scenario, the mean predicted 

runoffs in the future periods 2020s and 2050s were found to be higher than the baseline 

period in the month of April; while they almost matched with baseline in May before 

increasing again. The mean predicted runoffs in the future period 2080s were much higher 

than the baseline and the other future periods. Under B2 scenario, the mean predicted runoffs 

in all the future periods were higher than the baseline, except for 2050s, when it was seen to 

be slightly lower in June compared to the baseline period. Mean runoffs were predicted 

maximum in the future period 2080s, followed by 2020s and 2050s. 

 

Table 6: Percent change in total runoff for future periods under A2 and B2 scenarios. 

Combination 

A2  B2 

2020s 2050s 2080s  2020s 2050s 2080s 

1 8.20 9.48 26.06  10.34 10.47 21.34 

2 -6.09 -4.91 17.00  -1.14 -5.39 13.96 

3 2.84 2.90 20.95  5.15 3.05 17.18 

4 7.90 9.10 25.75  11.41 10.08 21.00 

5 -6.39 -5.29 16.68  -1.45 -5.79 13.63 

6 -0.43 2.52 21.94  4.84 2.66 16.84 

7 8.05 9.35 25.89  11.54 10.34 21.16 

8 -6.24 -5.04 16.82  -1.32 -5.52 13.79 

9 2.70 2.77 22.08  4.97 2.92 17.00 

10 7.77 9.20 25.65  11.35 10.03 20.95 

11 -6.51 -5.19 16.58  -1.52 -5.83 17.05 

12 2.42 2.62 21.83  4.78 2.61 16.79 

13 7.48 7.09 25.45  11.04 9.64 20.67 

14 -6.81 -1.85 16.38  -1.83 -6.23 13.29 

15 2.13 2.39 21.64  4.47 2.22 10.98 

16 7.63 9.07 25.47  11.17 9.90 20.81 

17 -6.66 -5.32 16.40  -1.70 -5.96 13.43 

18 2.27 2.49 21.66  4.60 2.48 16.65 

19 7.91 9.35 25.82  11.56 10.30 21.12 

20 -6.38 -5.04 16.75  -1.31 -5.57 13.74 

21 2.56 2.77 22.01  4.99 2.88 16.96 

22 4.49 8.97 25.50  11.25 9.90 20.83 

23 -9.80 -5.42 16.43  -1.61 -5.96 13.45 

24 -0.86 2.39 21.69  4.68 2.48 16.67 

25 4.54 2.18 25.65  11.38 10.17 13.83 

26 -9.75 -5.17 16.58  -1.49 -5.70 13.59 

27 -0.82 2.64 21.83  4.81 -2.84 16.81 

Max 8.20 20.48 26.06  23.79 15.78 39.15 

Min -9.82 -26.93 16.36  -8.86 -15.79 -4.96 

Mean -0.81 -3.22 21.21  7.46 -4.27 15.20 
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Fig. 4: Monthly plots of mean predicted runoff for baseline and future periods under A2 and 

B2 scenarios. 

Tables 7 show the statistics of present and projected mean discharges, respectively, at the 

outlet of the watershed under A2 and B2 scenarios. Using this table, box plots were prepared 

for mean values for baseline and future periods under A2 and B2 scenarios, as shown in Figs. 

5. From Fig. 5, it can be seen that under A2 scenario, the predicted mean runoff increased 

slightly in the future period 2020s as compared to the baseline period, after which it 

decreased in 2050s and then again increased. Under B2 scenario, the mean predicted runoff 

decreased in 2020s as compared to baseline period and after that it gradually increased in 

2050s and 2080s. The predicted runoff was highest as 6.74 m3 s-1 in the future period 2080s 

and lowest as 0.42 m3 s-1 in the future period 2050s under A2 scenario. 

 

Table 7:  Statistics showing the present and projected mean discharges 

Statistics 

(m3 s-1) 
Baseline 

2020s  2050s  2080s 

A2 B2  A2 B2  A2 B2 

Mean 1.98 1.97 2.13  1.92 1.98  2.40 2.32 

SD 0.87 0.87 0.88  0.75 0.87  1.07 0.98 

Minimum 0.45 0.43 0.83  0.42 0.44  0.50 0.76 

1st Quartile 1.28 1.28 1.44  1.33 1.26  1.61 1.54 

Median 1.87 1.82 1.95  1.78 1.88  2.22 2.24 

3rd Quartile 2.53 2.57 2.69  2.37 2.56  3.07 2.87 

Maximum 5.60 5.71 4.54  4.27 4.85  6.74 5.39 
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Fig.5 Box plots of mean runoffs for baseline and future periods under (a) A2 and (b) B2 

scenarios. 

4. Conclusions 

The present study was carried out to create a hydrological model of the Nuranang watershed 

situated in Tawang district of Arunachal Pradesh, India and assess the impact of climate 

change on the hydrology of the watershed. The hydrology of the watershed was modelled 

quite well using the SDSRM as it was seen a satisfactory match between observed and 

predicted runoff with ME value more than 0.6 and CRM less than 0.2, in both the calibration 

and validation years. Using SDSM, the climate variables obtained as output from a coarser 

resolution GCM, HadCM3 model was downscaled to obtained finer resolution inputs 

required by the hydrological model. The initial screening of predictor variable of SDSM 

resulted the predictor 500 hpa geopotential height to have maximum correlation in all the 

three predictant viz. maximum temperature, minimum temperature and precipitation. The 

performance of SDSM for the calibration and validation period for Tmax, Tmin and 

precipitation shows that monthly data gave better results than the seasonal data in both 

calibration and validation period. The projected change in maximum temperature (Tmax) 

showed an increasing trend in the future years. The average increase in Tmax was projected to 

vary from 1.03 to 3.44 °C under A2 scenario and from 0.92 to 2.13 °C under B2 scenario in 

the three future periods. The average increase in minimum temperature (Tmin) was projected 

to vary from 1.20 to 3.97 °C under A2 scenario and from 1.11 to 2.92 °C under B2 scenario 

in all the future periods. The average increase in precipitation was projected to vary from -

0.82 to 19.02% under A2 scenario and from 1.18 to 17.05% under B2 scenario in all the 

future periods. Percent change in total runoff for different future years followed the same 

trend as change in precipitation from the present climate under both A2 and B2 scenarios. 

The predicted changes in total runoff were observed as -0.81, -3.22, and 21.21% under A2 

scenario for the future years 2020s, 2050s, and 2080s, respectively. Under B2 scenario, the 

predicted changes in total runoff were observed as 7.46, -4.27, and 15.20% for the future 

years 2020s, 2050s, and 2080s, respectively. The percentage reduction in total runoff was 

more in 2050s relative to 2020s, and then it increased again in 2080s.  
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