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Abstract: The high degree of spatial variability of precipitation is a challenge to climate-

resilient water resources planning. It gets enhanced in a physiographical diverse landscape like 

India. It is also exacerbated by the complex and variable interaction of the different weather 

determinants like monsoons, jet streams, etc. Another challenge that frequently presents itself 

in the study of water resources is the availability of unbroken and high-resolution data of 

climate inputs like precipitation. This challenge gets more complicated when physical access 

is constrained for a considerable portion of the study area by factors like local topography, 

transport networks, etc. It is often the case with Himalayan catchments in India, which are also 

highly vulnerable to medium and long term impacts of climate change along with land-use 

changes. In this context, it becomes essential to work with freely available global gridded data 

(precipitation) sets like APHRODITE, MERRA, etc. However, a pre-requisite to the use of 

such datasets is the analysis of their comparative accuracies with some reference data sets. In 

the backdrop of the limited data availability of the Himalayan region, the Himalayan basin of 

the river Satluj is chosen as the study area for the ranking of different gridded datasets given 

the observed precipitation data of eight stations. As a part of the ranking exercise, two 

approaches of multi-criterion decision-making, such as the Entropy-based Compromise 

Programming (deterministic approach) and Technique for Order Preference by Similarity to an 

Ideal Solution in Fuzzy field, f-TOPSIS (Stochastic approach) were used. The Compromise 

Programming has the advantage of being flexible in terms of its ability to accommodate any 

number of error indices according to the preference of the user, while for the f-TOPSIS, the 

relative importance of attributes is used by the fuzzy numbers is higher instead of precise 

numbers. In Compromise Programming, the error indices, namely, Correlation Coefficient 

(CC), Root Mean Square Error (RMSE), and distribution based Skill Score (SS), were used. 

The daily gridded data sets, namely APHRODITE, ERA-Interim, PFD, MERRA, CHIRP, 

IMD, and CFSR, were considered in this study for ranking purposes. The spatial resolution of 

these data sets was 0.25 degrees, while their temporal duration varied for different lengths. The 

result showed that the evaluation of weights of criteria and ratings of alternatives in f-TOPSIS 

by linguistic variables represented by fuzzy numbers overcome the deficiency in the 

deterministic approach. It was also observed that both the methods provided similar outcomes 

(Spearman rank correlation coefficient, R varies from 89 to 96%), which consequently 

increased the confidence of the ranking results. Furthermore, the present analysis also revealed 

that the APHRODITE consistently performed better in all the stations (CC, RMSE, and SS 

varies from 0.97-0.99, 0.44-0.56 and 0.87-0.96, respectively) followed by IMD (CC, RMSE, 

and SS ranges from 0.82-0.99, 0.44-0.62 and 0.89-0.99, respectively) and PFD (CC, RMSE, 

and SS ranges from 0.09-0.18, 1.00 and 0.95-0.98, respectively). Finally, the Group Decision 

Making methodology was used to aggregate the results over the entire study area, and it was 

found that APHRODITE was the best dataset for the whole study area. However, the study had 



 

 

a limitation that all the observed data points were in the lower portion of the watershed. 

Although this limitation also opens up a scope of using interpolation techniques for the 

ungauged parts of the Satluj basin.   

Keywords: Satluj Basin; Compromise Programming; f-TOPSIS; Spearman Rank Correlation 

Coefficient; Ranking 

I. Introduction 

Precipitation, one of the most crucial parameters of the hydrological cycle, which needs to be 

studied in space and time. However, it is essential to consider it’s nature of distribution and 

variability of precipitation on local and regional scales (Venkatesh and Jose, 2007). The varied 

physiological features and altitudinal differences in India promote various types of climate 

range, which make precipitation as irregular and complex concerning time and space (Das et 

al. 2009). Hence, deviation in the precipitation pattern and the accuracy of a precipitation data 

set may significantly affect the outputs of land surface hydrological model studies (Salio et al., 

2015; Hu et al., 2016). Therefore it is vital to obtain high-quality precipitation data sets with 

high spatial and temporal resolutions for these studies.  

In general, precipitation datasets are estimated from rain gauge observations, satellite 

observations, and various numerical or reanalysis models (Xie and Arkin, 1997). Among all 

the sources, rain gauge observations are typically used to measure precipitation directly at the 

Earth’s surface (Kidd, 2001). However, gauge observations have some disadvantages, such as 

uneven areal coverage over most marine and sparsely populated areas (Kidd et al., 2017; Rana 

et al., 2015; Xie and Arkin, 1997; Salio et al., 2015). This challenge gets multiplied when 

physical access to hydrological data becomes constrained for a considerable portion of the 

study area by factors like local topography, transport networks, etc. Besides this, only a few 

studies have been conducted to investigate precipitation variations over the past century in 

Central Asia because of its limited data availability (Schiemann et al., 2008; Hu et al., 2016; 

Hu et al., 2017). However, they did not apply the original observations from meteorological 

stations in the area to evaluate the gridded precipitation data sets (Schiemann et al., 2008). 

Furthermore, scientific evaluations of those data sets will provide valuable guidance for users 

to select the most appropriate data sets for their particular applications like hydrological model 

studies (Hu et al., 2018). It is often the case with Himalayan catchments in India, which are 

also highly vulnerable to medium and long term impacts of climate change along with land-

use changes. In this context, to overcome the deficiencies of gauge observations, it becomes 

essential to work with freely available global gridded datasets (viz. Satellite data sets and 

model-based datasets) due to its spatially homogeneous and temporally complete nature for 

vast area of the globe (Kidd & Levizzani, 2011; Xie et al., 2003). Although global gridded 

datasets also have a high level of uncertainties associated with satellite precipitation algorithms 

(Xie and Arkin, 1997) and input limitations (Sorooshian et al., 2011; Knutti and Sedlacek, 

2013). Hence, before the data sets can be applied in these studies, their accuracies at local and 

regional scales should be first evaluated. In the backdrop of the limited data availability of the 

Himalayan region, the Himalayan basin of the river Satluj is chosen as the study area for the 

current study.  

From the background mentioned above, the present study was taken up to provide a 

comprehensive evaluation of the accuracies of the seven gridded data sets, which will be 

helpful when selecting suitable data sets for future studies of long-term changes in precipitation 

over the Himalayan basin of the river Satluj. Therefore, to accomplish the objective of the 

study, the different gridded datasets (viz., APHRODITE, ERA-Interim, PFD, MERRA, 

CHIRP, IMD, and CFSR) were ranked over the Satluj basin of Himalayan Region with 



 

 

precipitation observations from meteorological stations. The article is organized as follows: at 

first the study area, data sets, and methodology are described in section II, which is followed 

by comprehensive evaluations and detailed discussion of the study in section III. In the last 

section, a conclusion is presented (section IV). 

II. Study area / Materials and Methodology 

The current section discusses the description of the study area, various data sets, and the 

employed method. 

Study Area and Data 

The Satluj River basin, upstream of the Bhakra Reservoir (Indian part), located in the western 

Himalayan region, was selected as a study area in the present study (Figure 1). The area of the 

study basin is about 22,275 km2. The altitude of the basin varies widely from about 500 m to 

7000 m. The Satluj River originates from the lakes of Mansarover and Rakastal in the Tibetan 

plateau at an elevation of more than 4500 m and forms a part of the Indus River system. Sutlej 

River is a perennial river. It receives water from glaciers and precipitation during summer and 

ground flow during winter (Singh et al., 2015). The study conducted by Singh and Kumar 

(1997) indicated that rainfall is concentrated mostly in the lower part of the basin. Hence, this 

river basin is characterized by diversified climatic patterns. Eight stations from Satluj Basin, 

India (Figure 1) were selected for this study: Bhakra RL 1700, Berthin, Deslehra, Kahu, Kasol, 

Kuddi, Rampur, and Suni. The details of these eight stations are given in Table 1. The station-

based observed daily time series of precipitation were acquired from Bhakara Beas 

Management Board (BBMB), India. For this study, only those stations were included that are 

at least 95% complete within each year. Besides the observed station datasets, seven gridded 

datasets were used in this study. The details of different gridded datasets are given in Table 2. 

Table 1: Details of meteorological stations 

Name of station Lat (N) Long (E) 
Duration of data 

(daily) 

Bhakra RL 1700 31° 24' 56'' 76° 26' 4.99" 1966-2010 

Berthin 31° 25' 10.99" 76° 38' 54.99'' 1962-2012 

Daslehra 31° 24' 56'' 76° 32' 56'' 1965-2010 

Kahu 31°13' 76°47' 1965-2007 

Kasol 31° 21' 25'' 76°52' 42'' 1962-2012 

Kuddi 31° 25' 27.99'' 76° 49' 40'' 1975-2007 

Rampur 31° 26' 77°38' 1965-2012 

Suni 31° 15' 77°7' 1970-2012 

Lat., Long., N, E denote latitude, longitude, north, and east, respectively. 

 

Table 2: Details of gridded datasets 

Data 
Spatial 

Resolution 

Temporal 

Resolution 
Duration 

Sources 

CFSR 0.25 daily 1980-2010 Saha et al., 2010 

MERRA 0.25 daily 1980-2010 Bosilovich et al., 2006 

APHRODITE 0.25 daily 1962-2012 Yatagai et al., 2012 

CHIRPS 0.25 daily 1981-2012 Funk et al., 2015 



 

 

ERA-Interim 0.25 daily 1979-2012 Dee et al.2011 

IMD 0.25 daily 1962-2012 Pai et al. 2014 

PFD 0.25 daily 1962-2010 Sheffield et al., 2006 

 

 

Fig. 1: Study area (Satluj Basin) 

Performance indicator 

Different researchers have suggested that meaningful but straightforward metrics should be 

used for evaluating a quantifiable measure to determine how different gridded datasets simulate 

the observed data (Preethi and Kripalani 2010; Schiemann et al., 2008; Hu et al., 2016; Hu et 

al., 2017). Three indicators, namely, root mean square error (RMSE), correlation coefficient 

(CC), and skill score (SS), were considered in this study among the numerous performance 

indicators available (Wilks 2011). The description of the performance indicators are given as 

follows: 

Root mean square error (RMSE) is a measure of the difference between the observed station 

data and gridded dataset. The smaller the value of RMSE (preferably zero), the better is the 

performance of the model and expressed in Eq. 1, 

𝑅𝑀𝑆𝐸 = √
∑ (𝐺𝑡−𝑂𝑡)2𝑛

𝑡=1

𝑛
      (1) 

Where 𝐺𝑡 represents the gridded data and 𝑂𝑡 represents the observed data and n represents the 

total number of observations. 



 

 

The correlation coefficient (CC) provides information on the strength of the linear relationship 

between the observed station data and gridded dataset and expressed in Eq. 2, 

𝑟 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

(𝑛−1)𝑠𝑥𝑠𝑦
                                            (2) 

Where r is the CC between observed data and gridded datasets x and y; 𝑥𝑖 is the observed 

station data ; 𝑥̅ is the mean of observed station data; 𝑦𝑖 is the gridded dataset; 𝑦̅ is the mean of 

the gridded dataset; 𝑠𝑥 and 𝑠𝑦 are the standard deviations of x and y, respectively, and n is the 

number of observations. CC values near 1 indicates good performance. 

Skill Score (SS) (Perkins et al., 2007) provides a measure of similarity between two probability 

density functions (PDFs), which allows comparison across the entire PDF, and is expressed in 

Eq. 3, 

𝑆𝑆 = ∑ 𝑚𝑖𝑛 (𝑓𝑚𝑓0)𝑛𝑏
𝑖=1                                         (3) 

Where nb is the number of bins used to calculate the PDF for a given region, 𝑓𝑚is the frequency 

of values in the given bin from the chosen gridded dataset, and 𝑓0 is the frequency of values in 

the given bin from the observed station data. If a model simulates the observed conditions 

perfectly and poorly, the SS is 1 and close to zero, respectively. 

Entropy Method 

The entropy method allows the distribution of weights among the different error indices 

automatically (Raju and Kumar, 2014; Raju et al., 2017) using Eq. 4, 

𝐸𝑛𝑗 = −
1

𝑙𝑛(𝑇)
∑ 𝑘𝑎𝑗 𝑙𝑛(𝑘𝑎𝑗)𝑇

𝑎=1        for j=1,2,3……J            (4)  

Where 𝐸𝑛𝑗  represents entropy for each indicator j. T represents the number of indicators and 

𝑘𝑎𝑗 represents the normalized error indices. 

The degree of diversification and finally the weights of each index is then calculated by 

following Eq. 5 and 6 respectively, 

𝐷𝑑𝑗 = 1 − 𝐸𝑛𝑗                                           (5) 

𝑟𝑗 =  
𝐷𝑑𝑗

∑ 𝐷𝑑𝑗
𝐽
𝑗=1

                                                    (6) 

Where, 𝐷𝑑𝑗 represents the degree of diversification and 𝑟𝑗 represents the normalized weight of 

indicators. 

Compromise Programming 

The Compromise Programming is based on the methodology to construct a metric for each 

gridded datasets based on the minimum distance from an ideal dataset (observed datasets). The 

distance measure 𝐿𝑝(𝑎)  (Raju et al., 2017) is calculated using the following Eq. 7 

𝐿𝑝(𝑎) = [∑ 𝑤𝑗|𝑓𝑗
∗ − 𝑓𝑗(𝑎)|

𝑝𝐽
𝑗=1 ]

1

𝑝                                (7) 



 

 

Where, indicator j=1,2,3.....J; 𝐿𝑝(𝑎)= 𝐿𝑝 metric for 𝑓𝑗(𝑎) = Normalised value of indicator j for 

gridded dataset a; 𝑓𝑗
∗ = Normalised ideal value of indicator j; 𝑤𝑗 = Weight of indicator j 

obtained from the entropy method. p = Parameter (1 for linear, 2 for squared Euclidean distance 

measure). In this case, p=2 was used. 

F-TOPSIS 

The Technique for Order Preference by Similarity to an Ideal Solution in Fuzzy field (f-

TOPSIS), is based on the distance of each indicator for each gridded datasets from the ideal 

solution. In a deterministic approach (compromise programming), sometimes, it is very tough 

to assign a precise performance rating to an alternative for the attributes under consideration 

for a decision-maker. Hence, to overcome the problem of allocating the relative importance of 

attributes, the f-TOPSIS is developed using the fuzzy numbers instead of precise numbers 

(Yang and Hung, 2007). This method is particularly suitable for solving the group decision-

making problem under fuzzy environment. 

This technique was applied in this study by following few steps. At first, the fuzzy decision 

was determined considering the number of rainfall stations used, the different gridded datasets, 

and performance indicators evaluated in compromise programming. After that, to homogenize 

the evaluation supplied for all the criteria, their values were linearly normalized. Finally, the 

proximity coefficients (DS_Plus and DS_Minus) for each alternative were calculated by ideal 

and anti-ideal values selected for each indicator. This technique was designed to minimize the 

distance of a data object from the positive ideal solution (DS_Plus) and maximize the distance 

from the negative ideal solution (DS_Minus). The closeness coefficient (C) of each alternative 

was calculated as follows in Eq. 8 

𝐶 =
𝐷𝑆_𝑀𝑖𝑛𝑢𝑠

𝐷𝑆𝑀𝑖𝑛𝑢𝑠+𝐷𝑆_𝑃𝑙𝑢𝑠
                                                       (8) 

It was sufficient to sort them according to the decreasing values of their closeness coefficient 

to establish the ranking of gridded datasets. A clear example of a fuzzy approach to ranking 

climate models can be found in Raju and Kumar (2015). Equal weights were considered for 

each criterion, and ideal and anti-ideal values for all the indicators were chosen as (1, 1, 1) and 

(0, 0, 0). 

Spearman Rank Correlation 

The Spearman rank correlation (R) is useful to determine the measure of association between 

the ranks achieved in two different methods, i.e., here, the correlation between the results of 

the Entropy-based compromise programming and the f-TOPSIS. If U and V denote the ranks 

achieved by the above methods(s) for the same gridded datasets, then R is defined as (Gibbons, 

1971) in Eq. 9 

𝑅 = 1 −
6 ∑ 𝐷𝑎

2𝑁
𝑎=1

𝑁(𝑁2−1)
                                                            (9) 

Where 𝐷𝑎 is the difference between ranks U and V achieved by the same gridded datasets, and 

N is the number of the gridded datasets. R values vary between −1 and +1. 

Group Decision Making Approach 



 

 

The values of the Lp metric are useful for ranking of the gridded datasets for individual stations. 

However, to aggregate the rankings of each station into a single rank over the study area, Group 

Decision Making methodology (Raju et al., 2017) was employed which is explained below.  

The descending order of rankings of gridded datasets in each station was divided into upper 

and lower portions: X = n/2 where n is the number of gridded datasets. The gridded datasets 

with rankings from 1 to X constitute the upper portion. 

Strength of each gridded datasets, e.g., 𝑆𝑇𝑎 is given in Eq. 10 

𝑆𝑇𝑎 = ∑ ∑ (𝑥 − 𝑧 + 1)𝑞𝑎𝑧
𝑘 ∀𝑎, 𝑘∀𝑧 = 1, … . 𝑥𝑥

𝑧
𝑚
𝑘=1                                                             (10) 

Where, 𝑞𝑎𝑧
𝑘 =1 if gridded datasets a is at position z for the station k, otherwise 0. Here, a 

corresponds to the gridded datasets in the upper portion; z is the position in the upper portion 

ranging from the 1st position to the xth position (z =1st, …xth), and k represents a station (k =1, 

2,..8).  

The weakness of the gridded datasets a, 𝑊𝐸𝑎 is given in Eq. 11 

𝑊𝐸𝑎 = ∑ ∑ (𝑧 − 𝑦 + 1)𝑞𝑎𝑧
𝑘 ∀𝑎, 𝑘∀𝑧 = 𝑦, … . 𝑛𝑛

𝑧=𝑦
𝑚
𝑘=1                                              (11) 

Where, 𝑞𝑎𝑧
𝑘 =1 if gridded datasets a is in position z for the station k, otherwise 0. Here, a 

corresponds to the gridded datasets in the lower portion; z is the position in the lower portion 

ranging from the 1st position to the lower portion (yth) up to the last ranking in the lower portion. 

Net strength of each gridded datasets a is computed by Eq. 12 

𝑁𝑆𝑎 = 𝑆𝑇𝑎 − 𝑊𝐸𝑎                                                (12) 

The net strength, 𝑁𝑆𝑎is used to rank the gridded datasets. 

III. Results 

Station wise (various latitude and longitude combinations resulting in eight stations) values of 

precipitation were analyzed to assess how the individual gridded datasets can be ranked 

concerning the three performance indicators (RMSE, CC, and SS) using the Entropy-based 

compromise programming. The ranking exercise was also analyzed by using the f-TOPSIS 

method under the fuzzy payoff matrix of performance indicators (RMSE, CC, and SS). The 

employed methodology was demonstrated for the individual stations and later extended for the 

whole selected basin by using the group decision-making approach. The group decision-

making approach was employed to aggregate the ranking patterns for the whole selected basin 

covering eight observed stations. Related results are presented in the following sections. 

The results of the three indicators (RMSE, CC, and SS) for the eight observed stations are 

presented in Table 3. Minimum or zero error is desirable in the case of RMSE, whereas an ideal 

value of 1 is desirable for CC and SS. Table 3 shows that in the case of CC, APHRODITE data 

was correlated well with the observed data with a value of 0.97 to 0.99, whereas a minimum 

RMSE was observed with a value of 0.44-0.56. Hence, APHRODITE data showed the lowest 

RMSE and highest CC value among the other gridded datasets. Similar trends were also found 

for SS. In this case, APHRODITE showed 87-95% similarity with the observed PDFs, whereas 

CHIRPS showed a 100% similarity for every observed station. Though CHIRPS datasets 

showed very high value for SS for every station, other performance indicators depicted less 



 

 

importance than the other stations. Among the three indicators, CC was given the high 

importance (0.97 to 0.99 and 0.82 to 0.99 for APHRODITE and IMD datasets respectively) 

which means that its effect on ranking of gridded datasets is very significant followed by RMSE 

(0.44-0.56 and 0.46- 0.62 for APHRODITE and IMD datasets respectively) and skill score 

(0.87-0.95 and 0.89-0.99 for APHRODITE and IMD datasets respectively) for the observed 

rainfall stations of Satluj Basin. The above analysis indicated that each indicator responded 

differently for various gridded datasets. It was observed from the Entropy method that weights 

of performance indicators were varying (instead of assuming equal or some other proportion) 

for each observed station and expected to affect the ranking pattern of gridded datasets. Table 

3 also presents the values of Lp metric from Compromise programming for each gridded 

datasets for the observed rainfall stations of the Satluj Basin. A minimum amount of the Lp 

metric was considered to be suitable, and the ranking pattern is obtained accordingly for all 

gridded datasets. It was observed that the Lp metric was varying between 0.07-0.14 (first rank) 

and 0.21-0.27 (last rank) over seven ranks. APHRODITE and IMD were occupying the first 

two ranks with Lp metric values of 0.07-0.23 and 0.08-0.22, respectively, for every station 

except Kasol and Rampur. It is worth noting that the ERA-Interim, CFSR, and MERRA with 

Lp matric values of 0.16-0.26; 0.21-0.25 and 0.21-0.27, respectively occupied fifth, sixth, and 

seventh positions always for individual stations except Rampur stations. 

Table 3: Rank of the different gridded dataset for each station from Compromise 

programming along with its parameter (Lp) and performance indicator payoff matrix (RMSE, 

CC, and SS) 

  Root Mean Square Error (RMSE) 

  CFSR MERRA APHRODITE CHIRPS ERA-Interim IMD PFD 

Bhakra RL 1700 0.81 0.78 0.56 0.84 0.79 0.59 1.00 

Berthin 0.75 0.73 0.50 0.89 0.72 0.54 1.00 

Daslehra 0.79 0.76 0.54 0.88 0.77 0.58 1.00 

Kahu 0.80 0.77 0.55 0.86 0.77 0.62 1.00 

Kasol 0.78 0.75 0.54 0.90 0.73 0.53 1.00 

Kuddi 0.80 0.78 0.56 0.89 0.77 0.59 1.00 

Rampur 0.67 0.61 0.49 0.81 0.57 0.46 1.00 

Suni 0.72 0.69 0.44 0.89 0.67 0.49 1.00 

  Correlation Coefficient (CC) 

Bhakra RL 1700 0.01 0.07 0.99 0.38 0.46 0.91 0.14 

Berthin 0.00 0.05 0.99 0.33 0.44 0.93 0.15 

Daslehra 0.01 0.06 0.99 0.37 0.44 0.92 0.18 

Kahu 0.02 0.04 0.99 0.34 0.40 0.82 0.14 

Kasol 0.02 0.02 0.97 0.33 0.46 0.99 0.15 

Kuddi 0.02 0.04 0.99 0.36 0.44 0.91 0.14 

Rampur 0.01 0.01 0.98 0.17 0.40 0.99 0.09 

Suni 0.01 0.02 0.99 0.24 0.38 0.91 0.12 

  Skill Score (SS) 

Bhakra RL 1700 0.92 0.95 0.95 1.00 0.86 0.96 0.98 

Berthin 0.90 0.94 0.93 1.00 0.84 0.93 0.96 

Daslehra 0.90 0.94 0.93 1.00 0.84 0.96 0.96 



 

 

Kahu 0.91 0.95 0.92 1.00 0.84 0.99 0.96 

Kasol 0.90 0.96 0.93 1.00 0.84 0.94 0.95 

Kuddi 0.89 0.95 0.96 1.00 0.83 0.98 0.95 

Rampur 0.91 0.99 0.89 1.00 0.83 0.92 0.97 

Suni 0.90 0.96 0.87 1.00 0.82 0.89 0.97 

  Lp 

Bhakra RL 1700 0.22 0.22 0.09 0.13 0.18 0.10 0.14 

Berthin 0.21 0.21 0.07 0.15 0.17 0.08 0.14 

Daslehra 0.21 0.21 0.07 0.13 0.17 0.09 0.14 

Kahu 0.22 0.23 0.08 0.15 0.19 0.12 0.15 

Kasol 0.21 0.21 0.09 0.13 0.16 0.09 0.15 

Kuddi 0.21 0.21 0.07 0.14 0.16 0.08 0.16 

Rampur 0.25 0.27 0.23 0.18 0.26 0.22 0.14 

Suni 0.23 0.23 0.10 0.15 0.19 0.11 0.16 

  Rank from Compromise programming 

Bhakra RL 1700 6 7 1 4 5 2 3 

Berthin 6 7 1 3 5 2 4 

Daslehra 6 7 1 3 5 2 4 

Kahu 6 7 1 4 5 2 3 

Kasol 6 7 2 3 5 1 4 

Kuddi 6 7 1 3 5 2 4 

Rampur 5 7 4 2 6 3 1 

Suni 6 7 1 3 5 2 4 

 

Table 4: Rank of the different gridded dataset for each station from f-TOPSIS along with its 

parameters (DS_Plus, DS_Minus, and C) 

  DS_Plus 

  CFSR MERRA APHRODITE CHIRPS 

ERA-

interim IMD PFD 

Bhakra RL 1700 3.96 3.94 3.45 3.77 3.80 3.51 3.61 

Berthin 3.95 3.98 3.49 3.69 3.84 3.54 3.61 

Daslehra 3.96 3.95 3.47 3.68 3.83 3.52 3.59 

Kahu 3.95 3.99 3.44 3.74 3.83 3.57 3.60 

Kasol 3.94 3.97 3.53 3.69 3.81 3.52 3.59 

Kuddi 3.94 3.97 3.46 3.69 3.83 3.52 3.64 

Rampur 3.91 3.96 3.67 3.71 3.86 3.64 3.51 

Suni 3.94 3.98 3.52 3.69 3.83 3.58 3.61 

  DS_Minus 

Bhakra RL 1700 0.10 0.07 0.55 0.23 0.20 0.49 0.40 

Berthin 0.11 0.07 0.51 0.31 0.17 0.46 0.40 

Daslehra 0.09 0.06 0.53 0.32 0.17 0.48 0.41 

Kahu 0.12 0.08 0.56 0.26 0.17 0.43 0.41 

Kasol 0.12 0.08 0.47 0.31 0.19 0.48 0.41 

Kuddi 0.12 0.09 0.54 0.31 0.17 0.48 0.37 



 

 

Rampur 0.14 0.09 0.33 0.29 0.14 0.36 0.50 

Suni 0.11 0.08 0.48 0.31 0.17 0.42 0.40 

  C 

Bhakra RL 1700 0.02 0.02 0.14 0.06 0.05 0.12 0.10 

Berthin 0.03 0.02 0.13 0.08 0.04 0.11 0.10 

Daslehra 0.02 0.02 0.13 0.08 0.04 0.12 0.10 

Kahu 0.03 0.02 0.14 0.06 0.04 0.11 0.10 

Kasol 0.03 0.02 0.12 0.08 0.05 0.12 0.10 

Kuddi 0.03 0.02 0.13 0.08 0.04 0.12 0.09 

Rampur 0.03 0.02 0.08 0.07 0.03 0.09 0.13 

Suni 0.03 0.02 0.12 0.08 0.04 0.11 0.10 

  Rank form f-TOPSIS 

Bhakra RL 1700 6 7 1 4 5 2 3 

Berthin 6 7 1 4 5 2 3 

Daslehra 6 7 1 4 5 2 3 

Kahu 6 7 1 4 5 2 3 

Kasol 6 7 2 4 5 1 3 

Kuddi 6 7 1 4 5 2 3 

Rampur 5 7 3 4 6 2 1 

Suni 6 7 1 4 5 2 3 

 

Similarly, the three indicators named RMSE, CC, and SS were calculated under the fuzzy field 

in the f-TOPSIS method for the eight observed stations. Table 4 presents DS_Plus, DS_Minus, 

and C values for every rainfall station used. In the f-TOPSIS, the top three ranks were always 

occupied by APHRODITE, IMD, and PFD for every station, with the relative closeness of 

0.08-0.14; 0.09-0.12 and 0.09-0.13, respectively, except Kasol and Rampur. It is interesting to 

note that the fourth, fifth, sixth, and seventh positions were always occupied by CHIRPS, ERA-

Interim, CFSR, and MERRA respectively for every station, with the relative closeness of 0.06-

0.08; 0.03-0.05; 0.02-0.03 and 0.02, respectively except Rampur stations. Ranks obtained for 

the different gridded datasets using the Entropy-based compromise programming and f-

TOPSIS are shown in Table 3 and Table 4, and the corresponding Spearman rank correlation 

(R) for both the methods varies from 89 to 96%.  

 



 

 

 

Fig. 3: Net strength of gridded dataset in group decision making for varying weight scenario 

for individual stations 

An effort is also made to rank the gridded datasets for the whole Staluj basin (considering every 

observed station) using the group decision-making approach explained in Section III. It is 

observed from Fig. 3 that first three ranked gridded datasets, i.e., APHRODITE, IMD, and 

PFD, have a net strength (on an average) of 8, 7, and 5, respectively, whereas CHIRPS, ERA-

Interim, CFSR, and MERRA (fourth, fifth, sixth, and seventh ranks) have a net strength (on an 

average)  of 4, -1, -3 and -5 respectively. Hence, gridded datasets occupied by sixth and seventh 

ranks were not considered for the Satluj basin due to a difference between the net strengths of 

these gridded datasets compared to the first three for every station, which also supports the 

conclusion made from the values of performance indicator (Table 3). In summary, the current 

study shows that APHRODITE is a better data set than the other gridded datasets in the 

Himalayan basin of the river Satluj. The rainfall characteristics may have caused the large 

underestimations for the gridded data sets over mountainous areas, local topography of the 

mountainous region, and limited stations used in their approaches (Willmott and Matsuura, 

2012; Harris et al., 2014; Schneider et al., 2014). Therefore, APHRODITE should be the more 

reasonable data set to detect long-term precipitation variations over the Himalayan basin of the 

river Satluj. 

IV. Conclusions 

The accuracies of gridded precipitation data sets are essential for regional climate studies and 

hydrological models (Hu et al., 2018). In this paper, the Entropy-based Compromise 

Programming and the Technique for Order Preference by Similarity to an Ideal Solution in 

Fuzzy field, f-TOPSIS were applied to understand the effectiveness of both algorithms in 

deriving the best dataset as a part of the ranking exercise. This was illustrated through its 

application to precipitation data in the Himalayan basin of the river Satluj, India. For the 

Entropy-based Compromise Programming, the minimum distance (Lp matric) of a gridded 

dataset from an ideal in the available set (observed dataset) were determined by using three 

performance indicators, namely Correlation Coefficient (CC), Root Mean Square Error 

(RMSE) and distribution based Skill Score (SS) on eight stations with seven gridded datasets 

(8x7 matrix). It was found from the Entropy-based Compromise Programming that 

APHRODITE and IMD were occupying the first two ranks with Lp metric values of 0.07-0.23 
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and 0.08-0.22, respectively, for every station except Kasol and Rampur. f-TOPSIS was also 

applied with two different distances such as the shortest distance from the ideal solution and 

the farthest distance from the negative ideal solution and approximations was tackled through 

fuzzy logic. In f-TOPSIS, the top three ranks were always occupied by APHRODITE, IMD, 

and PFD for every station, with the relative closeness of 0.08-0.14; 0.09-0.12 and 0.09-0.13, 

respectively except Kasol and Rampur. When the performances of the Entropy-based 

compromise programming and f-TOPSIS methods were compared, it was observed that both 

the methods provided similar outcomes (R varies from 89 to 96%), which consequently 

increased the confidence of the ranking results. Furthermore, our analysis also revealed that 

APHRODITE had the highest correlation and lowest bias (RMSE) compared with other 

gridded datasets when against the observed station rainfall datasets. In this context, Hu et al., 

2018 reported that the discrepancies in the performances between the gridded data sets were 

primarily induced by their different interpolation methods and the numbers of available 

meteorological stations used in the interpolation. Besides, the limited observed meteorological 

stations (all stations are located in the lower portion of the Satluj Basin) also impact the 

performance of those methods, but this limitation also created the scope of using interpolation 

techniques for the ungauged parts of the Satluj basin. Finally, the Group Decision Making 

methodology was used to aggregate the results over the entire study area, and it was found that 

APHRODITE was the best dataset for the whole study area. 
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