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Abstract 

Although categorised as “safe” in respect of ground water development and management, the 

state of Assam in northeast India is found to possess the “highest depleting potential” of 

usable ground water storage in the country, and to exhibit falling trends of pre-monsoon 

ground water levels in about 55% of the monitoring Stations.  With the second highest 

population density in the state and with ground water being the major source of water-use, the 

Kamrup Metropolitan District of the state has already started witnessing water stress, and has 

been characterised by the maximum falling trend of ground water level in the state.  In this 

study, seasonal and annual trends of ground water level and rainfall in the Kamrup region 

were analysed from monthly water-level data of 39 stations and concurrent rainfall data from 

January 2007 till June 2019 by using nonparametric Mann-Kendall test and Sen‟s Slope 

estimator.  The trends indicate cause of concern, and provide scientific basis for strategizing 

ground water development and management for sustainable water-use in the region. 

Keywords: Groundwater level; rainfall; trend analysis; Mann Kendall; Sen‟s slope; Kamrup 

Metropolitan District 

INTRODUCTION 

Groundwater is a major element for sustenance of life and livelihood in many parts of the 

world, particularly where the use of surface water is constrained either due to inadequacy of 

quantity and/or quality or for lack of infrastructure for providing supply from surface sources.  

However ramifications of increasing population and alterations in the dynamics of 

groundwater recharge have started exerting pressure on the availability of groundwater in 

many regions where complacency about continued availability of groundwater have, until 

recently, masked the need for scientific analysis and assessment for sustainably managing 

this precious resource. 

The state of Assam in the north-eastern part of India is one such region, all 28 districts of 

which had been designated “safe” by the Central Ground Water Board (CGWB) of India in 

its National Compilation of Dynamic Ground Water Resources (CGWB, 2017).  Here the 

category “safe” indicates a stage of groundwater extraction that is less than 70% in the area 
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under consideration.  However, observations on groundwater levels in bore and dug wells 

over the last two decade in many parts of the state indicate that the availability of 

groundwater has begun being stressed.  From in-situ and satellite-based estimates of usable 

groundwater storage across India, Bhanja and Mukherjee (2019) found high rate of depletion 

(>5 km
3
/year) of groundwater storage despite increase in precipitation in the state of Assam, 

and flagged the state as having the “highest depletion potential” of usable groundwater 

storage amongst states in India.  A general decline in trend of ground water level in the state 

in the pre-monsoon period and the maximum falling trend of 0.812 m/year in Kamrup 

Metropolitan District Ground Water Monitoring Stations (GWMS) of the state are reported in 

the Ground Water Year Book for North Eastern Region in 2016-17 published by the CGWB.  

The Kamrup Metropolitan District particularly assumes significance in the light of falling 

trend of groundwater level as because Guwahati, the largest city of Assam and the largest 

metropolis of the north-eastern part of India lies in this district, and covers about 38% of the 

area and 76% of the population (as per 2011 census) of the district.  Further, despite being 

located on the bank of the mighty Brahmaputra River having large volume of flow, a major 

part of the city‟s population depends on groundwater for meeting the need of potable water 

(Singh et al., 2017; Bhattacharya and Borah, 2014; Das and Goswami, 2013), and the 

dependence is likely to increase in future unless adequate infrastructure for supplying water is 

created.  The increasing dependence on groundwater coupled with reducing subsurface 

infiltration due to increasing urbanization (Schueler, 1987) and a perceivably changing 

pattern of occurrence of seasonal rainfall have already started showing signs of distress as 

regards availability of water below ground level in post monsoon and winter seasons in parts 

of the Guwahati metropolis and the remaining areas of the Kamrup Metropolitan District.  It 

is therefore pertinent to assess the trend of groundwater level in the Kamrup Metropolitan 

District that would be necessary for devising management options for creating resilience 

against reduced availability of groundwater in the district. 

Although references to very few studies on the trend of groundwater levels in the Kamrup 

Metropolitan District or in Guwahati Metropolis could be found in literature and are cited in 

the preceding paragraph, studies conducted for investigating trends in groundwater levels 

elsewhere in India and abroad abound.  Most of the studies use statistical methods varying 

from simple linear regression to more advanced parametric and nonparametric methods 

(Helsel and Hirsch, 2002). Among the statistical methods, the classical approaches, such as 

the Mann-Kendall test, its seasonal variant, Sen‟s slope estimator, etc. have been widely used 

for testing trends in climatic and hydrological time series (Hirsch et al., 1982; Aziz and Burn, 

2006; Thas et al., 2007).  Pathak and Dodamani (2019) applied cluster analysis on long-term 

monthly groundwater levels and carried out Mann-Kendall tests to investigate annual and 

seasonal trends of groundwater levels in the groundwater drought-prone Ghataprabha River 

basin of India.  Kumar et al. (2018) used descriptive statistics, Modified Mann-Kendall Test 

and Sen‟s Slope Estimator for analysing trend of groundwater levels in alluvial aquifers of 

Uttar Pradesh in India.  Le Brocque et al. (2018) applied a modified Mann-Kendall test and 

Sen‟s slope estimator to data of 381 groundwater bores in southern Queensland in Australia 

from 1989 to 2015 in order to investigate annual trend of groundwater as well as the trend in 
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distinct wet and dry climatic phases. Palte et al. (2015) used Mann-Kendall test and Sen‟s 

slope estimator for identifying trends in pre and post-monsoon groundwater levels in Karnal 

district of Haryana in India over the period from 1974 to 2010.  Panda et al. (2012) used non-

parametric Kendall slope to assess the magnitude of trend and inverse distance weighted 

method of interpolation to interpret the spatial behaviour of the trends of groundwater levels 

in the Gujarat state of India.  Thakur and Thomas (2011) applied non-parametric Kendall‟s 

rank correlation test in order to identify trends in groundwater level data and linear regression 

test in order to identify the significance of the slope in the Sagar District of Madhya Pradesh 

in India.  Fenelon and Moreo (2002) used graphical methods employing Locally Weighted 

Scatterplot Smooths and statistical methods employing Mann-Kendall trend tests on 

groundwater levels and spring discharge during the years from 1960 to 2000 in the Yucca 

Mountain Region, Nevada and California in the USA for evaluating the variability and the 

upward, downward or cyclic trends.  Amongst other methods, Shamsudduha et al. (2009) 

used “Seasonal-Trend decomposition procedure based on Loess (STL)” (Cleveland et al., 

1990) for investigating trend and seasonal components in weekly groundwater levels in the 

Ganges-Brahmaputra-Meghna Delta in Bangladesh by noting the inadequacy of Mann-

Kendall and Seasonal Kendall tests in resolving trends in a time series characterized by serial 

dependence. 

Besides investigating trends of groundwater levels, mathematical modelling techniques have 

also been applied widely for assessing groundwater resources, for investigating relationships 

between occurrences of groundwater and other hydro meteorological variables and for 

forecasting groundwater levels.  Demirci et al. (2019) used Artificial Intelligence (AI) for 

modelling groundwater levels in the Reyhanli region of Turkey.  Kim and Lee (2019) used a 

correlation model for groundwater level and river stage considering changes in hydrological 

and geological conditions, and compared the results with measured values and those obtained 

from an ANN model.  Mirarabi et al. (2019) evaluated the performances of data-driven 

Support Vector machine Regression (SVR) and ANN models for forecasting groundwater 

levels of confined and unconfined systems in Hashtgerd plain in Iran at 1-, 2- and 3-month 

ahead.  Nadiri et al. (2019) analysed groundwater level variations in an aquifer in Iran.  

Balavalikar et al. (2018) used Particle Swarm Optimization based Artificial Neural Network 

(ANN) model for forecasting groundwater level in Udupi District of Karnataka in India.  

Brenner et al. (2018) used a process-based semi-distributed Karst model for evaluating 

simulated groundwater levels and frequencies in a chalk catchment in England.  Combining 

outputs from three fuzzy logic based models by ANN, Demirci et al. (2018) used Neuro-

Fuzzy (NF), SVR with radial basis functions and SVR with poly-kernel models to estimate 

groundwater level fluctuations in Minnesota in the USA.  Porte et al. (2018) used ANN 

model to predict groundwater level in Chhattisgarh in India.  Sahoo et al. (2017) used 

machine learning algorithms for modeling groundwater level changes in agricultural regions 

of the U.S.  Varouchakis (2017) used a Kalman filter adaptation algorithm with exogenous 

inputs to model groundwater level fluctuations in the island of Crete in Greece.  Lohani and 

Krishan (2015) used ANN for simulating groundwater level in Amritsar and Gurdaspur 

Districts of Punjab in India.  Varalakshmi, V. et al. (2014) used three dimensional 



 
 
 

groundwater flow model employing visual MODFLOW software to a semiarid hard rock 

aquifer in India.  Sreekanth et al. (2009) used ANN for forecasting groundwater level in 

Maheshwaram watershed of Telangana in India.  Besides the above, many other researchers 

used machine learning models including ANN (Nourani et al., 2015; Sahoo and Jha, 2013; 

Adamowski and Chan, 2011; Coulibaly et al., 2001), fuzzy theory (Güler et al., 2012; 

Kurtulus and Razack, 2010), genetic programming (Kasiviswanathan et al., 2016; Shiri and 

Kisi, 2011), autoregressive models (Chang et al., 2016; Bidwell, 2005; Knotters and 

Bierkens, 2001) and SVR (Yoon et al., 2011; Behzad et al., 2010) for groundwater modelling. 

In the study reported herein, seasonal trends of occurrence of dynamically available 

groundwater and rainfall over the Kamrup Metropolitan District have been analysed using 

statistical methods of trend analysis.  Further, the patterns of the seasonal occurrence of 

groundwater in relation to that of rainfall in the district have been examined using a black-

box and a data-driven ANN model, and conclusion drawn on the likely impact of change in 

the pattern of seasonal rainfall on the groundwater level in the district. 

STUDY AREA AND DATA USED 

As stated in the previous section, the Kamrup Metropolitan District in the state of Assam in 

India was chosen as the area of study.  The district covers an area of 1,528 km
2
, and is 

bounded by 25°43´ and 26°51´ North latitudes and 90°36´ and 92°12´ East longitudes.  The 

climate of the area is sub-tropical with semi-dry summer and cold winter.  The maximum and 

the minimum temperatures in the district range from 37 to 39 degree and 6 to 7 degree 

Celsius respectively.  The annual rainfall in the district ranges from 1500 mm to 2600 mm 

with an average precipitation of about 1752 mm.   The Bharalu, Digaru and Kolong Rivers 

flows through the district in generally northerly directions to join the Brahmaputra River 

flowing along the northern boundary of the district.  Recent and older Alluvium and Shillong 

group of rocks of pre-cambrian age constitute the predominant geological formations of the 

District.  Alluvial sediment is the major water bearing formation underlying the district. 

 

Figure 1: Location map of the Kamrup Metropolitan District
1
 

                                                             
1
 District map source: source: http://sdmassam.nic.in/pdf/dmp/Kamrup(M).pdf  

http://sdmassam.nic.in/pdf/dmp/Kamrup(M).pdf


 
 
 

As regards the current status of groundwater development, the groundwater draft mainly 

comprises withdrawals for domestic and irrigation purposes and a negligible amount for 

industry.  Although the district lies on the bank of the Brahmaputra River, it lacks adequate 

infrastructure to tap, treat and supply surface water from this river to meet the domestic, 

irrigation and industrial needs.  Even only 40% of the population of Guwahati metropolitan 

area within the district has access to central piped water supply system.  Although the 

Government of Assam is in the process of implementing four major projects for supplying 

water to the Guwahati Metropolitan Area in the district, the dependence on non-potable water 

sources, predominantly groundwater is likely to continue outside Guwahati Metropolitan area 

in the district in the foreseeable future. 

The CGWB has 39 groundwater monitoring wells in the district comprising five tube wells 

and the rest dug wells.  Data of monthly groundwater occurrence in metre below ground level 

(mbgl) at these 39 locations from November 2007 to June 2019 were collected from CGWB.  

Data of monthly rainfall in millimetre (mm) over the district for the period from 12 water-

years from June 2007 to December 2018 were collected from the India Meteorological 

Department (IMD). 

METHODOLOGY 

Data processing 

In accordance with the classification of months into seasons in India by IMD, the monthly 

groundwater level data for each well and the monthly rainfall data over the district were 

grouped into monsoon (June-September), Post-monsoon (October-November), Winter 

(December-February) and Pre-monsoon (March-May) seasons.  The seasonal average of 

groundwater levels at all 39 wells and that of rainfall over the district were then estimated for 

each year.  Thus series of data of groundwater levels for 12 post-monsoon, winter and pre-

monsoon seasons (from 2007-08 to 2018-19) and 11 monsoon seasons (from 2008-09 to 

2018-19) were produced; for rainfall, series of seasonal data of 12 water-years (from 2007-08 

to 2018-19) were obtained. 

Trend analysis 

Seasonal data of groundwater levels and rainfall were investigated for trends.  Noting that 

non-parametric Mann-Kendall test and Sen‟s Slope estimator are widely adopted in climatic 

and hydrological time series analysis, these two methods have been used in the current study 

for analysing seasonal trends in groundwater levels and rainfall. 

Mann-Kendall test (Mann, 1945; Kendall, 1975; Gilbert, 1987) is a commonly employed 

non-parametric test to detect monotonic trends in series of environmental, climate or 

hydrological data.  The null hypothesis for this statistical test is that the data come from a 

population with independently and identically distributed. The alternative hypothesis is that 

the data follow a monotonic trend.  The presence of a statistically significant trend is 

identified using the values of a test statistic Z, the positive value indicating an upward trend 

and a negative value indicating a downward trend.  In non-parametric statistics, Sen‟s slope 



 
 
 

estimator (Sen, 1968) or Theil-Sen is used to robustly fit a linear model f(t) = Qt + B, Q and B 

being the slope and a constant respectively, to n number of sample points by choosing the 

median of the slopes of all lines through pair of points, and hence to estimate the true slope 

(change per unit time) if a linear trend is present in a time series.  Interested readers may refer 

published literature (Jain and Kumar, 2012; Drápela and Drápelová, 2010, Kundzewicz, 

2004, etc.) for details of the tests.  For ease of calculation, a Macro named MAKESENS 1.0 

created by Salmi et al. (2002) has been used. 

 

Groundwater level simulation 

Having detected the seasonal trends of average groundwater levels and rainfall over the 

district, the relation between occurrence of monthly rainfall and monthly average 

groundwater level were sought by mathematical modelling in order to explore the influence 

of rainfall in recharging the aquifers underlying the district.  For this purpose, the series of 

monthly average groundwater levels were simulated with inputs of monthly rainfall.  

Although it is perceived that other variables, such as quantum of extraction of groundwater, 

length of spells of zero-rainfall between rainfall events and, hence, antecedent moisture 

conditions, etc. would influence the variability of the monthly average groundwater levels, 

these variables were considered extraneous in comparison with rainfall, and were not 

considered in the modelling exercise for simulation.  Further, the consideration of monthly 

rainfall as the primary and the only trigger for simulating monthly average groundwater 

levels stemmed from the observation that the hydro meteorological characteristics of the 

district, being monsoonal, display strong seasonal patterns that may be adequate to simulate 

the influence of the input over the output to the model.  For simulation, two black-box type 

models, namely a system-theoretic Parametric Simple Linear model (PSLM) and a data-

driven non-linear ANN model (Goswami and O‟Connor, 2007) were used.  For ease of 

referencing, the models are briefly described below: 

Parametric Simple Linear Model 

In the Parametric form of Simple Linear Model (PSLM), a Linear Transfer Function type 

representation of the transformation of the input series x to the output series y for discrete 

data intervals is formulated as 
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In this form, the current value of y depends linearly on previous values of y and x.  The 

parameters of the model are estimated by the method of Ordinary Least Squares.  The model 

may be applied both in non-updating as well as in updating modes.  In updating mode, past 

recorded values of y are used as inputs in contrast with the use of past simulated values of y 

in the case of non-updating mode.  In the present study, PSLM was applied in updating mode 

with the variable xt, yt representing the monthly rainfall and the monthly average groundwater 

level at t
th
 month respectively. 

Artificial Neural Network Model 

A typical neural network consists of a number of computational elements, i.e. nodes or 

neurons, and connection pathways linking these nodes reflecting the functioning of the 

biological neural networks of the human brain.  The connection pathways transfer 

information between various neurons with each connection pathway between a pair of 

neurons is associated with a „connection weight‟.  A neuron usually receives an array of 

inputs, but it has a single output.  The input elements constituting a neuron input array can 

either be external inputs to the network or outputs of other neurons.  The neuron accumulates 

these inputs and transforms these to a neuron output by means of a mathematical transfer 

function.  This output is distributed to a number of connection pathways thereby serving as 

inputs to other neurons, with each of these connection pathways transmitting the full value of 

the contributing neuron. Amongst various types of neural networks, the “multi-layer feed 

forward network” consisting of an input layer comprising neurons from input series of 

monthly rainfall, an output layer having single output that produces the output series of 

simulated monthly average groundwater levels and only one “hidden” layer, having either 

one or two neurons, between the input and the output layers has been used in this study.  A 

layer is usually a group of neurons having same pattern of pathways connecting other neurons 

of adjacent layers, and each neuron in a layer has pathways connecting neurons in the next 

adjacent layer, but none to those of the same layer.  A schematic diagram of the ANN model 

is presented in Figure 2. 

 

Figure 2: Schematic diagram of ANN model 

For a neuron either in the hidden or in the output layer, the received inputs yi are transformed 

to its output yout by applying the widely-used logistic function of sigmoid form as the transfer 

function bounded in the range [0,1] as below 
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where f() denotes the transfer function, wi is the input connection pathway weight, M is the 

total number of inputs and wo is the neuron threshold (or bias), i.e. a base-line value 

independent of the input.  If l is the total number of neurons in the input layer and m is the 

total number of neurons in the hidden layer, then the total number of weights to be estimated 

would be (l+1)m + (m+1).  Simplex method is used for automatic optimisation of weights for 

the ANN model used in this study. 

Model calibration  

Each model was calibrated first by split-sample calibration using about two-third of the data 

in the input and output series for calibration and the rest for validation.  The widely-used 

Nash-Sutcliffe model efficiency coefficient R
2
 (Nash and Sutcliffe, 1970) was used to 

evaluate the performance of each model.  Noting that the efficiency in validation was 

comparable with those in calibration, the model was then recalibrated using all data in the 

series. 

 

RESULTS AND DISCUSSIONS 

For visual examination of the pattern of seasonal variation of monthly rainfall and monthly 

average groundwater level, the series of these two variables and the 3-period moving average 

for each series are plotted in Figure 3.  From this figure, a general decline in the values of 

rainfall in monsoon represented by the peaks of the lower moving average graph and a 

general rise in the values of groundwater levels in post-monsoon and winter, albeit small, 

represented by the troughs of the upper moving average graph may be seen.  Being measured 

in mbgl, a rise in groundwater level indicates a lowering of groundwater availability in wells 

in the district. 

 

Figure 3: Monthly rainfall and average groundwater levels together with moving average 
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In order to explore seasonal trend in the variables, the seasonal values of rainfall and 

groundwater levels for the water-years for which data were available were plotted for each of 

the four seasons. Data in each graph were also presented with a line of best-fit and the 

equation of the line was given. These plots are shown in Figure 4.  From this figure, negative 

trends of rainfall are found in monsoon and post-monsoon seasons whereas positive trends 

are visible in winter and pre-monsoon seasons.  The declining trend of rainfall that is also 

represented by a relatively steep slope of the best-fit line is quite strong in monsoon, and is 

highly significant for the availability of dynamic groundwater in the district.  Similar 

declining trend, although not as strong as that for monsoon, is also present in the rainfall 

values of the post-monsoon season.  In contrast, there are rising trends of rainfall in winter 

and pre-monsoon seasons.  Overall, seasonal redistribution of rainfall appears to occur in the 

district with time.  As for groundwater levels in mbgl, negative trends are found in pre-

monsoon and monsoon seasons whereas positive trends are visible in post-monsoon and 

winter seasons.  An overview of the trend clearly brings out patterns of influence of rainfall 

over groundwater levels, and as expected, shows that the effect of rainfall in a season is 

reflected in groundwater level in the following season.  Thus declining rainfall in monsoon 

and post-monsoon seasons translates into declining trends of groundwater levels in mbgl in 

post-monsoon and winter seasons respectively.  Similarly increasing rainfall in winter and 

pre-monsoon seasons are reflected in the falling trends of groundwater levels in mbgl in pre-

monsoon and monsoon seasons respectively.  The positive trends of groundwater level in 

mbgl indicating increasing unavailability of groundwater are particularly significant and 

worrying, and need to be monitored with future data as these become available. 
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Post-monsoon (Oct – Nov)  

  

y = -14.475x + 1062.5 

0

200

400

600

800

1000

1200

1400

2
0

08
-0

9

2
0

09
-1

0

2
0

10
-1

1

2
0

11
-1

2

2
0

12
-1

3

2
0

13
-1

4

2
0

14
-1

5

2
0

15
-1

6

20
16

-1
7

2
0

17
-1

8

2
0

18
-1

9

R
ai

n
fa

ll 
(m

m
) 

y = -0.049x + 3.7199 

0.0

1.0

2.0

3.0

4.0

5.0

2
00

8
-0

9

2
00

9
-1

0

2
01

0
-1

1

20
11

-1
2

2
01

2
-1

3

2
01

3
-1

4

2
01

4
-1

5

2
01

5
-1

6

2
01

6
-1

7

2
01

7
-1

8

2
01

8
-1

9G
ro

u
n

d
 w

at
er

 le
ve

l (
m

b
gl

) 

y = -1.9755x + 87.73 

0

50

100

150

200

2
00

7
-0

8

2
00

8
-0

9

20
09

-1
0

2
01

0
-1

1

2
01

1
-1

2

2
01

2
-1

3

2
01

3
-1

4

2
01

4
-1

5

2
01

5
-1

6

20
16

-1
7

2
01

7
-1

8

2
01

8
-1

9

R
ai

n
fa

ll 
(m

m
) 

y = 0.0133x + 3.7133 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

20
08

-0
9

2
00

9
-1

0

2
01

0
-1

1

2
01

1
-1

2

2
01

2
-1

3

2
01

3
-1

4

2
01

4
-1

5

2
01

5
-1

6

2
01

6
-1

7

2
01

7
-1

8

2
01

8
-1

9

G
ro

u
n

d
 w

at
er

 le
ve

l (
m

b
gl

) 



 
 
 

Winter (Dec – Feb)  

  
Pre-monsoon (Mar – May)  

  
  

Figure 4: Seasonal values of rainfall and groundwater levels together with lines of best-fit 

In order to further detect trends with statistical significance, Mann-Kendall test was 

undertaken and Sen‟s slope estimators evaluated for the series of rainfall and groundwater 

levels for each season.  Results of these analyses are presented in Table 1.  From this table, a 

significant increasing trend of winter rainfall and a correspondingly significant declining 

trend in groundwater level, and hence a significantly rising trend of groundwater availability, 

in pre-monsoon may be seen. Although trends of the variables in all other seasons are 

statistically insignificant, a positive Sen‟s slope could be detected for winter groundwater 

level in mbgl.  For rainfall, it may be seen that the Sen‟s slope and the Man-Kendall test 

statistic both exhibit negative trend in monsoon.  Overall, it shows that the reducing 

availability of groundwater in winter might have been the impact of the reducing rainfall in 

monsoon, and is highly important for sustainable living of the habitants of the Kamrup 

Metropolitan District. 
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Table 1:  Results of Man-Kendall test and the values of Sen‟s Slope estimator 

Time series First year Last 

Year 

n Test 

Z 

Significan

ce 

Q B 

Monsoon rainfall (mm) 2008-

2009 

2017-

2018 

1

0 

-

1.07 

 -8.26 1087.4

4 

Monsoon groundwater 

level (mbgl) 

2008-

2009 

2017-

2018 

1

0 

-

1.43 

 -0.12 4.17 

Post-monsoon rainfall 

(mm) 

2007-

2008 

2017-

2018 

1

1 

0.00  1.05 64.97 

Post-monsoon 

groundwater level 

(mbgl) 

2007-

2008 

2017-

2018 

1

1 

-

0.31 

 -0.02 3.88 

Winter rainfall (mm) 2007-

2008 

2016-

2017 

1

0 

1.79 * 2.35 7.48 

Winter groundwater 

level (mbgl) 

2007-

2008 

2016-

2017 

1

0 

0.18  0.01 5.24 

Pre-monsoon rainfall 

(mm) 

2007-

2008 

2016-

2017 

1

0 

0.36  5.44 339.42 

Pre-monsoon 

groundwater level 

(mbgl) 

2007-

2008 

2016-

2017 

1

0 

-

1.79 

* -0.16 6.24 

NOTE:  * for p < 0.05; NS for p ≥ 0.1. 

Q and B represent the variable and the intercept of a trend-line.  The 95% and 99% 

confidence limits are also provided. 

 

For exploring the time-lag of the impact of monthly rainfall on monthly average groundwater 

level, the linear PSLM and the non-linear ANN models were run a large number of times 

with different number of the parameters and nodes of the respective models by noting the 

value of the coefficient of efficiency R
2
 of the calibrated model in each run.  The results of 

the simulation of monthly average groundwater levels using monthly rainfall by PSLM and 

ANN models are presented in Table 2and 3 respectively.  In Table 2, the structure of each 

PSLM model is indicated by s – r - b where s and r are the Moving Average and Auto-

Regressive orders and b is the time-delay of the model 

From Table 2, it may be seen that in five sets, each with the same AR order varying from one 

to five, the order of the MA component yielding the highest value of the R
2
 model efficiency 

coefficient corresponds to five.  In one set with AR order six, the order of the MA component 

for highest efficiency works out to six.  However, the difference in the values of R
2
 

coefficient for the structures with the MA order five and six in this set is marginal.  From 

these results, it was concluded that monthly average groundwater levels could be modelled 

with best fitting performance when the order of the MA components comprising of the 

monthly rainfall values was five.  This indicates that the monthly average groundwater level 

in the district in a given month is likely to be influenced by the monthly rainfall of five 

previous months starting from the given month



 
 
 

. 

. 

Table 2:  Results of simulation of monthly average groundwater level by PSLM 

Model 

structur

e 

(s - r - 

b) 

R
2 

(%) 

Model 

structur

e 

(s - r - 

b) 

R
2 

(%) 

Model 

structur

e 

(s - r - 

b) 

R
2 

(%) 

Model 

structur

e 

(s - r - 

b) 

R
2 

(%) 

Model 

structur

e 

(s - r - 

b) 

R
2 

(%) 

Model 

structur

e 

(s - r - 

b) 

R
2 

(%) 

1-1-0 45.5

7 

1-2-0 53.6

2 

1-3-0 57.0

2 

1-4-0 58.6

6 

1-5-0 60.8

7 

1-6-0 62.4

5 

2-1-0 51.5

3 

2-2-0 55.3

2 

2-3-0 57.3

7 

2-4-0 58.6

8 

2-5-0 61.4

7 

2-6-0 63.2

4 

3-1-0 52.8

8 

3-2-0 57.6

3 

3-3-0 59.0

7 

3-4-0 59.5

7 

3-5-0 61.4

7 

3-6-0 63.6

3 

4-1-0 55.4

4 

4-2-0 61.0

1 

4-3-0 63.4

1 

4-4-0 63.4

6 

4-5-0 63.8

7 

4-6-0 64.3

4 

5-1-0 56.7

3 

5-2-0 62.5

9 

5-3-0 65.0

6 

5-4-0 65.3

7 

5-5-0 65.6

3 

5-6-0 65.6

2 

6-1-0 56.4

6 

6-2-0 62.4

9 

6-3-0 64.9

2 

6-4-0 65.2

0 

6-5-0 65.5

4 

6-6-0 65.6

5 

Note: In each set with constant AR order r, the structure yielding the highest R
2
 is shown in 

bold 

Table 3:  Results of simulation of monthly average groundwater level by ANN model 

Neurons 

in input 

layer 

Neurons in 

hidden 

layer 

No. of 

weights 

optimized 

R
2 
(%) Neurons in 

input layer 

Neurons in 

hidden 

layer 

No. of 

weights 

optimized 

R
2 
(%) 

1 1 4 -0.02 1 2 7 28.28 

2 1 5 56.91 2 2 9 54.33 

3 1 6 64.89 3 2 11 66.94 

4 1 7 64.87 4 2 13 68.25 

5 1 8 70.65 5 2 15 70.01 

6 1 9 -0.01 6 2 17 41.60 

Note: In each set with constant number of neurons in the hidden layer, the structure yielding 

the highest R
2
 is shown in bold 

In the cases of results from ANN model as presented in Table 3, it may be found that the 

structure with five neurons in the input layer produces the highest value of the R
2
 model 

efficiency coefficient, in either set of models having one or two neurons in the hidden layer.  

The models with structure having the number of neurons more than two were not tested 

because of such models being highly non-parsimonious.  The structure with five neurons in 

the input layer indicates that, like in the case of the PSLM, the monthly average groundwater 



 
 
 

level in a given month is likely to be influenced by the monthly rainfall of five previous 

months starting from the given month when an ANN model is fitted. 

Overall, the results from one linear and one non-linear model consistently indicate that the 

impact of five previous months‟ rainfall starting from a given month are likely to be reflected 

in the monthly average groundwater level, and hence the recharge of the dynamic 

groundwater resource and, in turn, the availability of ground water in the district, in that 

month.  This corroborates the observations from trend-detection analysis using best-fit 

straight line described earlier that the impacts of declining monthly rainfall in the monsoon 

(Jun-Sep) and post-monsoon (Oct-Nov) seasons are likely being reflected in the increasing 

trend of monthly average groundwater levels mbgl in the post-monsoon (Oct-Nov) and winter 

seasons (Dec-Feb).  Similarly, the observations from model simulation studies also 

substantiate the observations from the trend-detection analyses using Mann-Kendall test 

statistic and Sen‟s slope estimator that reducing availability of groundwater in winter might 

have been the impact of the reducing rainfall in monsoon.  These observations resulting from 

the study are highly important for sustainable living of the habitants of the Kamrup 

Metropolitan District. 

CONCLUSION AND RECOMMENDATION 

The present study was undertaken to investigate seasonal trends, if any, in the occurrence of 

groundwater in the Kamrup Metropolitan District in Assam, and the presence of trends in 

seasonal rainfall that might be influencing the former.  The study was conducted with 

available data of monthly average ground water level (mbgl) at 39 stations in the Kamrup 

Metropolitan District and monthly rainfall in the district over a period from 2007 to 2019.  

For investigating trends, the slopes of the lines of best-fit, Mann-Kendal test statistic, and 

Sen‟s slope estimator were used.  For studying the likely influence of previous month‟s 

rainfall on the groundwater level at any given month, simulation of monthly average 

groundwater levels were undertaken by fitting a linear and a non-linear  mathematical model 

of black-box type, namely the system-theoretic PSLM and the data-driven ANN model.  

From this extensive study, it could be concluded that five months‟ rainfall starting from a 

given month are likely to influence the monthly average groundwater level in that month, and 

hence the availability of ground water in the district.   

This conclusion is highly important particularly in the context of declining trend of 

groundwater level in mbgl that might cause increasing scarcity of groundwater in the district 

in the post-monsoon and winter months.  Suitable options would have to be considered for 

creating resilience against likely hardship in sourcing groundwater that may result from likely 

redistribution of seasonal rainfall within a water-year and declines in the amount of rainfall in 

the monsoon and the post-monsoon seasons in particular in future water-years.  A feasible 

alternative would be adoption of suitable policies and implementation of schemes for 

sustainable development and management of groundwater and conjunctive use of surface 

water and groundwater. 
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