Estimating field-scale variability in soil saturated hydraulic conductivity from rainfall-runoff experiments

Abhishek Goyal1, R. Morbidelli2, A. Flammini2, C. Corradini2, and R. S. Govindaraju3

1PhD student, Purdue University, West Lafayette, IN
2University of Perugia, Italy
3Bowen Engineering Head and Burke Professor, Purdue University, West Lafayette, IN
OVERVIEW

- Introduction and Background
- Research question
- Objectives of the study
- Experimental system
- Results
- Conclusions
- Limitations

Saturated soil’s ability to transmit water when subjected to hydraulic gradient

- Influences partitioning of rainfall into surface and subsurface waters
- Exhibits maximum variability among infiltration parameters (Russo and Bresler, 1981).

We deal with field-scale estimation

- Typically K_s is assumed to be spatially log-normal

$$f_{K_s}(k) = \frac{1}{\sqrt{2\pi\sigma_y^2 k}} \exp\left[-\frac{1}{2} \left(\frac{\ln k - \mu_y}{\sigma_y^2}\right)^2\right]$$

If $r < K_s$ and $t_r < t_p$, then $f = r$ and surface saturation does not occur, and no surface runoff is generated!
For a fixed rainfall rate, r, at any time, the maximum rate of infiltration can only be r.

Experimentally obtained “effective” K_s depends on rainfall (Langhans et al., 2011; Ojha et al., 2017)
Since each field-scale rainfall-runoff experiment resolves only a part of the variability in K_s, the following issues arise:

- **Identifiability**: part of the K_s space is not resolved
- **Non-uniqueness**: each experiment yields a different estimate of K_s distributions
- **Generalization**: the results can not be generalized even for a study area
- **Equifinality**: model and measurement errors also lead to non-uniqueness
1. Use a field-averaged infiltration* model and Monte Carlo simulations to obtain the possible range of distributions of K_s that would describe experimental observations over a field for a rainfall event.

2. Consolidate the ranges of K_s distributions over multiple rainfall events to yield the best range of K_s distributions, using an information-theoretic approach.

EXPERIMENTAL SYSTEM

- Closed plot system with silty loam soil
- Experiments conducted under natural rainfall events over a period of a year

Adapted from Flammini et al. (2018)
Rainfall rate and infiltration rate observed during the November 02, 2013 event in the study plot
METHODOLOGY

\[y(t) = P(x, t; \theta) + \varepsilon \]

- **Model inputs:** \(r, \Delta \theta, \) and \(\psi \)
- **Model parameters:** \(\mu_y \) and \(\sigma_y \)
- **Error model:** Gaussian

Model inputs:
- \(r \), \(\Delta \theta \), and \(\psi \)

Model parameters:
- \(\mu_y \) and \(\sigma_y \)

Error model: Gaussian

- **Expected value of infiltration rate**
- **Infiltration model** (Govindaraju et al., 2001)
- **Model inputs:**
- **Model parameters:**
- **Measurement error**
Stable distribution achieved at $t = 3.5$ hours
Stable distribution achieved at $t = 1.5$ hours
Stable distribution achieved at $t = 3.5$ hours
• Entropy-based measure to consolidate the stable distributions

Summary distribution of the 8 calibration experiments
COMBINING THE DISTRIBUTIONS

Marginal distributions of the parameters μ_y and σ_y
PARAMETER ESTIMATES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>Most likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{K_s}(mm/h)</td>
<td>0.87</td>
<td>16.32</td>
<td>2.98</td>
<td>1.27</td>
</tr>
<tr>
<td>σ_{K_s}(mm/h)</td>
<td>0.01</td>
<td>1041.20</td>
<td>8.93</td>
<td>0.86</td>
</tr>
<tr>
<td>cv_{K_s}</td>
<td>0.01</td>
<td>63.80</td>
<td>3.02</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Experimental values:
- $\mu_{K_s} = 1.0$ mm/h
- $cv_{K_s} = 1.0$
Eight separate rainfall-runoff experiments used

Comparison of observed field-scale infiltration rate and simulated infiltration rate using the most likely parameters

$R^2 = 0.984$

$NS = 0.980$
LIMITATIONS

- Monte Carlo analysis used in the study
- The support in the parameter space for each rainfall-runoff experiment may not be similar
- The summary measure requires common support
- What if point measurements of K_s are available independently in the field from infiltrometers? No good way to leverage these data.
CONCLUSIONS

- Rainfall-runoff experiments may not explore the entire log-normal space of saturated hydraulic conductivity.

- Calibration using different rainfall-runoff events may not result in the same set of K_s distributions. The resulting distributions may also have different forms.

- The summary measure can result in a more principled estimate of K_s for a given study area.
Thank you!