Structural Insight into the Expanded PCB-Degrading Abilities of a Biphenyl Dioxygenase Obtained by Directed Evolution

Pravindra Kumar1,4†, Mahmood Mohammadi2†, Jean-François Viger2†, Diane Barriault2, Leticia Gomez-Gil3, Lindsay D. Eltis3, Jeffrey T. Bolin1 and Michel Sylvestre2*

1Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
2Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC H7V 1B7, Canada
3Departments of Microbiology and Biochemistry, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
4Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, India

Received 1 October 2010; received in revised form 1 November 2010; accepted 2 November 2010
Available online 10 November 2010

Edited by I. Wilson

Keywords:
polychlorinated biphenyl; Burkholderia xenovorans LB400; enzyme engineering; Rieske-type oxygenase; PCB

The biphenyl dioxygenase of Burkholderia xenovorans LB400 is a multicomponent Rieske-type oxygenase that catalyzes the dihydroxylation of biphenyl and many polychlorinated biphenyls (PCBs). The structural bases for the substrate specificity of the enzyme’s oxygenase component (BphAELB400) are largely unknown. BphAE4p, a variant previously obtained through directed evolution, transforms several chlorobiphenyls, including 2,6-dichlorobiphenyl, more efficiently than BphAELB400, yet differs from the parent oxygenase at only two positions: T335A/F336M. Here, we compare the structures of BphAELB400 and BphAE4p and examine the biochemical properties of two BphAE4p variants with single substitutions, T335A or F336M. Our data show that residue 336 contacts the biphenyl and influences the regiospecificity of the reaction, but does not enhance the enzyme’s reactivity toward 2,6-dichlorobiphenyl. By contrast, residue 335 does not contact biphenyl but contributes significantly to expansion of the enzyme’s substrate range. Crystal structures indicate that Thr335 imposes constraints through hydrogen bonds and nonbonded contacts to the segment from Val320 to Gln322. These contacts are lost when Thr is replaced by Ala, relieving intramolecular constraints and allowing for significant movement of this segment during binding of 2,6-dichlorobiphenyl, which increases the space available to accommodate the doubly ortho-chlorinated congener 2,6-dichlorobiphenyl. This study provides important insight about how Rieske-type oxygenases can expand substrate range through mutations that

*Corresponding author. E-mail address: Michel.Sylvestre@iaf.inrs.ca.
† P.K., M.M., and J.-F.V. contributed equally to this work.
Present addresses: M. Mohammadi, Département de Génie Informatique et Génie Logiciel, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC H3C 3A7, Canada; J.-F. Viger, Biofloral, 675 Montée St-François, Laval, QC H7C 2S8, Canada.
Abbreviations used: RO, Rieske-type oxygenase; BPDO, biphenyl dioxygenase; PCB, polychlorinated biphenyl; NDO, naphthalene dioxygenase; GC-MS, gas chromatography-mass spectrometry; PEG, polyethylene glycol.

0022-2836/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
Introduction

Biphenyl dioxygenase (BPDO) is a multicomponent Rieske-type oxygenase (RO). Like the other aryl-hydroxylating dioxygenases, it has been extensively studied because it catalyzes the transformation of a range of nonphysiological substrates. These include polychlorinated biphenyls (PCBs), which are of environmental concern, and heterocyclic compounds of pharmaceutical and agrochemical interest. BPDO catalyzes the first reaction of the bacterial biphenyl catabolic pathway. This three-component system catalyzes the insertion of two oxygen atoms into vicinal carbons of biphenyl, yielding cis-(2R,3S)-dihydroxy-1-phenylcyclohexa-4,6-diene. In Burkholderia xenovorans LB400, the three components are the oxygenase, BphAE_LB₄₀₀, a heterohexamer composed of three α subunits (BphA_LB₄₀₀) and three β subunits (BphE_LB₄₀₀); the ferredoxin, BphF_LB₄₀₀; and the ferredoxin reductase component, BphG_LB₄₀₀ (Fig. 1). Each α subunit of the α₃β₃ hexamer contains a Rieske-type Fe₂S₂ cluster and a mononuclear iron center. Electrons flow successively from NADH to the FAD center in BphG, thence to the Rieske clusters of BphF and BphAE, and finally to the mononuclear iron catalytic center. The mechanism of dihydroxylation is thought to be very similar to that of naphthalene dioxygenase (NDO) from Pseudomonas sp. NCIB 9816-4.

BPDO_LB₄₀₀ is one of the most potent biocatalysts of natural origin for the dioxygenation of chlorobiphenyls. However, several dichlorinated and trichlorinated biphenyls are poorly transformed by this enzyme, including 2,6-dichlorobiphenyl, one of the major metabolites resulting from the reductive dehalogenation process conducted during anaerobic dehalorespiration. Moreover, as pointed out by previous authors, the congeners containing two chlorines in the ortho position of a single ring (2,6-dichlorobiphenyls) are strikingly resistant to cometabolic degradation by aerobic bacteria. Only rare bacteria of natural origin and recombinant bacteria producing engineered BPDOs were shown to transform this congener. Recently, the BphAE_{p4} variant was created from BphAE_LB₄₀₀ by substitution at two residues, T335A and F336M. This variant catalyzes the oxygenation of many PCB congeners, including 2,6-dichlorobiphenyl, more efficiently than BphAE_LB₄₀₀. Structures of Pandorea janzewii B-356 BphAE (BphAE_BB₃₅₆), Rhodococcus jostii RHA1 BphA1 (BphA1RHA1), Sphingobium yanoikuyae B1 (BphA1B1), and cumene and toluene dioxygenases have been reported. Structural analyses have shown that residue 377 of BphA1RHA1 (corresponding to Phe336 of BphALB₄₀₀) makes contact with the substrate, but residue 325 of BphA1RHA1 (corresponding to Thr335 of BphAE_{p4}) is too distant to interact directly with substrate. Similarly, residue 377 of BphALB₄₀₀ and several others that, according to models of BphAE, have no contact with the substrate were shown to modulate the reaction turnover rates and regiospecificity toward chlorobiphenyls. However, the mechanisms by which these residues influence the enzyme’s catalytic properties remain unclear.

In the classic lock-and-key model of enzyme-substrate interaction, the catalytic cavity defines the space that fits exactly the dimension and shape of the substrate, placing its reactive atoms into a productive position toward the catalytic center. This model, which predicts the enzyme’s catalytic cavity, can be remodeled to fit a new substrate by altering residues that line the catalytic pocket. However, this model is inadequate for enzymes that bind many different substrates in a productive orientation, especially those with bulky substituents, such as chlorobiphenyls. Moreover, the mechanisms by which relaxed enzymes such as BPDO evolve to expand their substrate range are still undetermined. Understanding how the residues influencing ROs specificity and catalytic properties interact with substrate analogues will help decipher some of the mechanisms by which these relaxed enzymes evolve and will also help design strategies to engineer improved biocatalysts exhibiting expanded substrate specificities. In this study, in an attempt to identify the mutation(s) in BphAE_{p4} that contribute most to its expanded substrate range and to gain more insight into the role played by residues...
335 and 336 of BphAE_{LB400}, we have examined the biochemical properties of two BphAE_{LB400} variants with single substitutions, T335A or F336M, and we have determined and compared the three-dimensional structures of BphAE_{LB400} and its biphenyl-bound form with those of variant BphAE_{p4} and its 2,6-dichlorobiphenyl-bound form.

Results

Metabolism of 2,6-dichlorobiphenyl by BphAE_{LB400} variants

In a previous report, BphAE_{p4} (A335M336) was shown to perform better than BphAE_{LB400} (T335F336) toward 2,6-dichlorobiphenyl. In this study, we created BphAE_{p401} (A335F336) and BphAE_{p402} (T335M336) to identify which of the two substitutions has greater influence on activity toward 2,6-dichlorobiphenyl. The ability of all enzymes to catalyze the oxygenation of this substrate was assessed using a whole-cell assay with IPTG-induced recombinant *Escherichia coli* strains. SDS-PAGE analysis indicated that *E. coli* DH11S pDB31[LB400-bphFG] harboring pQE31[bphAE_{LB400}] or either one of the recombinant plasmids, pQE31[bphAE_{p4}], pQE31[bphAE_{p402}], or pQE31[bphAE_{p401}], produced similar amounts of enzyme (not shown). Furthermore, based on the amount of 2,3-dihydro-3,4-dihydroxybiphenyl monitored after addition of biphenyl to resting cell suspensions of recombinant *E. coli* expressing these enzymes, the mutations did not affect the ability to oxidize biphenyl and no 3,4-dihydro-3,4-dihydroxybiphenyl was produced.

In a previous study, it was shown that BphAE_{p4} metabolizes 2,2′-dichlorobiphenyl to generate principally 3,4-dihydro-3,4-dihydroxy-2,2′-dichlorobiphenyl instead of 2,3-dihydroxy-2′-chlorobiphenyl, as produced by BphAE_{LB400}. Gas chromatography-mass spectrometry (GC-MS) analyses of the metabolites generated by cells producing BphAE_{p401} revealed that this mutant yielded 2,3-dihydroxy-2′-chlorobiphenyl as the major metabolite, whereas BphAE_{p402} produced principally the 3,4-dihydro-3,4-dihydroxy-2,2′-dichlorobiphenyl (Fig. 2a). Therefore, the F336M substitution influenced the regiospecificity toward 2,2′-dichlorobiphenyl, but neither of the mutations (F336M or T335A) curtailed the ability of the enzyme to dihydroxylate this substrate.

In a resting cell assay, after 18 h of incubation, recombinant *E. coli* cells expressing BphAE_{p4} transformed 25±5% of the initial amount (50 μM) of 2,6-dichlorobiphenyl added to the bacterial suspension; under the same conditions, cells expressing BphAE_{p401} transformed 15±3% of this substrate. Cells expressing BphAE_{p402} and those expressing BphAE_{LB400} metabolized 2,6-dichlorobiphenyl very poorly, transforming less than 1% of the substrate to produce trace amounts of metabolites, whereas those expressing BphAE_{p4} and BphAE_{p401} clearly produced two metabolites (Fig. 2b). In a previous work, BphAE_{B-356} was shown to produce two metabolites from 2,6-dichlorobiphenyl, and the major one was predicted to be 2′,3′-dihydroxy-2,3′-dihydroxy-2,6-dichlorobiphenyl on the basis of the crystal structure of the BphAE_{LB400} 2,6-chlorobiphenyl complex, which was consistent with an *ortho-meta* oxygenation of this substrate. When BphAE_{p4} catalyzed the oxygenation of 2,6-chlorobiphenyl, GC-MS analysis showed that the minor metabolite was the same as the major metabolite produced by BphAE_{B-356} (i.e., 2′,3′-dihydroxy-2′,3′-dihydroxy-2,6-dichlorobiphenyl). Analysis of the crystal structure of the BphAE_{p4} 2,6-dichlorobiphenyl complex (see below) is consistent with the fact that BphAE_{p4} produces 3′,4′-dihydroxy-3′,4′-dihydroxy-2,6-dichlorobiphenyl as a major metabolite. Cells expressing BphAE_{p401} produced the same metabolites as those expressing BphAE_{p4}, but with lower yield: the sum of areas under GC-MS peaks of metabolites was about one third of the value obtained for cells expressing BphAE_{p4}. Moreover, the ratio of the metabolites, and thus the regiospecificity of these enzymes toward 2,6-dichlorobiphenyl, differed significantly.

In summary, of the mutations T335A and F336M, the data indicate that T335A contributed more to the increased reactivity of BphAE_{p4} toward 2,6-dichlorobiphenyl. It is not clear if the F336M mutation alone influences the regiospecificity because the amounts of metabolites produced by cells expressing BphAE_{p402} are too small. However, it is clear that the additional substitution of F336M along with T335A is effective to alter the regiospecificity. Together, these observations suggest that the side chain at position 336 appears to influence the regiospecificity of the enzyme toward 2,6-dichlorobiphenyl.

Crystal structure BphAE_{LB400} general features

BphAE_{LB400} crystals are triclinic, space group *P*1, with unit cell parameters *a*=132.6, *b*=132.4, *c*=133.0 Å, and *α*=102.6, *β*=102.7, and *γ*=104.6°. Analysis of the probable protein and solvent content of the unit cell suggested the possibility of 12 αβ dimers (4 ααββ-hexamers) in the asymmetric unit with a Matthews coefficient *V* _M_ =2.41 Å³ Da⁻¹ and a solvent content of 50%; these basic aspects of the crystal packing were confirmed by determination of the structure. Crystallographic data and statistics are reported in Table 1.

The crystal structure of BphAE_{LB400} was refined to final *R* and *R* _free_ values of 20.0% and 26.8% at a resolution of 2.5 Å. The final model includes residues Asn18 to Phe143 and Phe153 to Pro459 of the α subunit and Phe9 to Phe188 of the β subunit.
The center part of the α subunit (residues 144–152) was excluded from the final model because it was a disordered region and there was no electron density. Triplets of αβ dimers associate to generate four α₃β₃ hexamers with noncrystallographic 3-fold symmetry. The αβ dimers as represented by chains AB-CD-EF, GH-IJ-KL, MN-OP-QR, and ST-UV-WX form the four functional hexamers. Like the other arylhydroxylating dioxygenases, BphAE₄₄0 assembles as a mushroom-shaped α₃β₃ hexamer, with the α subunits forming the cap and the β subunits forming the stem. As expected, the folds of the α and β subunits are also very similar to those presented by the structures of the homologs referenced above. Each α subunit carries a Rieske-type [2Fe–2S] His₂Cys₂ cluster and coordinates a mononuclear Fe(II) ion via the side chains of conserved His, His, and Asp residues; Fe also binds one water molecule.

Crystals of BphAE₄₄0 were exposed to solid biphenyl and subjected to crystallographic analysis, which produced a structure of the complex refined to 2.4-Å resolution and a final R-factor of 21.8% (R_free=25.2%) (Table 1). The biphenyl molecule could be identified clearly in initial difference Fourier maps. Binding of biphenyl in the active
site and near the mononuclear Fe(II) requires only local structural adjustments and, thus, did not alter the basic aspects of crystal packing.

Comparison of the crystal structures of native and biphenyl-bound BphAE_{LB400}

The presence of 12 independent αβ dimers requires analysis of the variations in protein conformation observed in the crystals. Superposition of the 12 native BphAE_{LB400} dimers shows that they are all very similar in the core of the α subunit. This is also the case for the biphenyl-bound enzyme (Supplementary Fig. S1a). Thus, for either substrate-free or biphenyl-bound BphAE_{LB400}, the Cα atoms of the 12 protomers can be superposed in pairs with root-mean-square deviation (rmsd) values of 0.2–0.4 Å (Supplementary Table S1). The average B-factor values were 29.2 Å² and 45.9 Å² for the substrate-free and biphenyl-bound forms. The least ordered residues are located at the edges of the molecule (Supplementary Fig. S2a–h). Among the segments showing greatest disorder, four are of interest.

The segment comprising residues 247–263 of the α subunit is a loop covering the active-site mouth, and it corresponds to residues 223–240 of the α subunit of NDO and BphA1A2B1. In the crystal structures of NDO and BphA1A2B1, this segment was significantly displaced upon substrate binding. 24,26 However,

<table>
<thead>
<tr>
<th>Table 1. Crystallographic data and refinement results for BphAE_{LB400} and BphAE_{p4} structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallographic data</td>
</tr>
<tr>
<td>BphAE_{LB400}</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
</tr>
<tr>
<td>Resolution (Å)</td>
</tr>
<tr>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
</tr>
<tr>
<td>c (Å)</td>
</tr>
<tr>
<td>α (°)</td>
</tr>
<tr>
<td>β (°)</td>
</tr>
<tr>
<td>γ (°)</td>
</tr>
<tr>
<td>Unique reflections</td>
</tr>
<tr>
<td>Completeness (%)</td>
</tr>
<tr>
<td>R_{cryst}(%)</td>
</tr>
<tr>
<td>I/σ (last shell)</td>
</tr>
<tr>
<td>Multiplicity</td>
</tr>
<tr>
<td>Refinement</td>
</tr>
<tr>
<td>No. of reflections</td>
</tr>
<tr>
<td>No. of residues</td>
</tr>
<tr>
<td>Water molecules</td>
</tr>
<tr>
<td>Resolution range</td>
</tr>
<tr>
<td>R_{cryst} (%)</td>
</tr>
<tr>
<td>R_{free} (%)</td>
</tr>
<tr>
<td>Average B-factors</td>
</tr>
<tr>
<td>CD 47.7</td>
</tr>
<tr>
<td>EF 47.4</td>
</tr>
<tr>
<td>GH 47.4</td>
</tr>
<tr>
<td>IJ 46.9</td>
</tr>
<tr>
<td>KL 47.3</td>
</tr>
<tr>
<td>MN 43.1</td>
</tr>
<tr>
<td>OP 43.2</td>
</tr>
<tr>
<td>QR 44.0</td>
</tr>
<tr>
<td>ST 52.7</td>
</tr>
<tr>
<td>UV 51.1</td>
</tr>
<tr>
<td>WX 54.1</td>
</tr>
<tr>
<td>Water atoms</td>
</tr>
<tr>
<td>All atoms</td>
</tr>
<tr>
<td>rmsd on bond lengths (Å)</td>
</tr>
<tr>
<td>rmsd on bond angles (°)</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
</tr>
<tr>
<td>Preferred</td>
</tr>
<tr>
<td>Allowed</td>
</tr>
<tr>
<td>Outliers</td>
</tr>
</tbody>
</table>

* R_{free} = \sum_{i=1}^{n} |l_{i}-\hat{l}_{i}| / \sum_{i=1}^{n} l_{i} \hat{l}_{i}
superposition of the 12 biphenyl-bound BphAE_{LB400} \(\alpha\beta\) dimers with the 12 dimers of the substrate-free enzyme does not reveal a consistent change in conformation associated with substrate binding. That is, substrate binding did not impose any specific conformational change on this segment.

The segment comprising residues 280–287 of the \(\alpha\) subunit has high \(B\)-factors in all chains of the native and biphenyl-bound forms of BphAE_{LB400} and shows conformational variability. The \(B\)-factors of all the chains in native BphAE_{LB400} are lower (\(\sim 37 \, \AA^2\)) in comparison to the biphenyl complex of BphAE_{LB400} (\(\sim 50 \, \AA^2\)). These residues correspond to segment 270–277 of BphA1A2_{RHAI}, which was reported to show significant displacement after substrate binding\(^{18}\); thus, this segment might also play a role in substrate binding. However, in contrast to BphA1A2_{RHAI}, we have no evidence that this segment is displaced when BphAE_{LB400} binds biphenyl, since the dominant conformation is the same in the presence and absence of substrates.

Finally, the N-terminal segment comprising residues 9–17 of the \(\beta\) subunit also exhibits high \(B\)-factors. In different contexts, this segment interacts with the active-site mouth segment 247–263 of an \(\alpha\) subunit belonging to a neighboring \(\alpha_3\beta_3\) hexamer, or it is pulled toward a loop composed of residues 158–164 of an adjacent \(\beta\) subunit from the same \(\alpha_3\beta_3\) hexamer. Thus, for the centrally positioned hexamer MNOPQR, segment 9–17 of chains N, P, and R interacts with segment 247–263 of chains A, K, and S of dimers AB, KL, and ST, respectively. This movement will be discussed further in the following paragraphs.

Consistent with an ortho-meta dioxygenation of biphenyl, C-2 and C-3 are the biphenyl atoms closest to the Fe atom, and in all active sites they are equidistant to it. A water molecule is directly in line between the Fe atom and C-2 atom of biphenyl (Fig. 3). The separation of the Fe atom from C-2/C-3 is in the range of 3.9–4.1 \(\AA\) for 7 of the 12 dimers (AB, CD, EF, MN, QR, UV, and WX). For dimers KL and ST the distance is shorter (3.3–3.5 \(\AA\)), and for dimers GH, IJ, and OP it is longer (4.3–4.5 \(\AA\)). In this work, BphAE_{LB400} was purified under anaerobic conditions and maintained under these conditions for
substrate binding. Therefore, the oxidation state of the catalytic iron should not be the cause of these variations, which suggests some adaptability in the region surrounding the catalytic iron. The position and orientation of the reactive ring of biphenyl appear to be tightly constrained by the surrounding protein atoms. Side chains of residues Gln226, Phe227, Asp230, Met231, His233, Ala234, and Leu333 of the α subunit are located within 4.5 Å of atoms of the reactive ring (see Supplementary Fig. S3a). In the distal ring pocket of BphAE_{LB400}, five atoms of the nonreactive ring of biphenyl are located within 4.5 Å of multiple protein atoms from Phe384, Phe378, Phe336, His239, Met231, Gly321, and Val287 (see Supplementary Fig. S3b). In spite of these multiple contacts, superposition of the 12 αβ dimers clearly illustrates that the nonreactive ring may access different orientations. These variations do not seem to be associated with equivalent variation in the orientation of the reactive ring, especially the ortho-meta C-2/C-3 atoms. Furthermore, the conformations of the residues lining the catalytic pocket remain very similar in all 12 dimers. Altogether, structural analysis shows that the catalytic pocket of BphAE_{LB400} as represented by the crystal structure of the substrate-free enzyme, provides enough space to bind biphenyl in a productive manner without major changes in protein conformation within the catalytic pocket.

Comparison of the crystal structure of BphAE_{LB400} with those of other BPDOs

The superposition of biphenyl-complexed BphAE_{LB400} (dimers AB, CD, and EF) with biphenyl-complexed BphA1A2RHA1 shows that the relative positions of the residues that coordinate the catalytic iron, His233, His239, and Asn388 in BphA_{LB400} and His224, His230, and Asn378 in BphA1RHA1, are similar (Supplementary Fig. S4). It also shows that carbons C-2 and C-3 of biphenyl align very well, although their distance to the catalytic iron is shorter in BphAE_{LB400} than in BphA1A2RHA1 and BphA1A2_{p4}. In the case of BphA1A2RHA1, several residues of the catalytic pocket, such as Leu274 and Ala311, were shown to move significantly after biphenyl binding. Using CASTp software and a probe radius of 1.4 Å, we measured an average volume of 1071 Å³ for all 12 αβ dimers of native BphAE_{LB400} and 312 Å³ for BphA1A2_{p4}. This suggests that the greater side-chain displacements observed when BphA1A2_{p4} binds to biphenyl might be caused, in part, by the smaller cavity volume compared to BphAE_{LB400}. Biphenyl-bound BphAE_{LB400} does not superpose as well with BphA1A2_{p4} which is structurally more similar to naphthalene dioxygenase than to BPDOs.

Crystal structure of BphAE_{p4} general features

BphAE_{p4} native crystals were grown in triclinic space group P1 with unit cell parameters a=132.6, b=132.4, c=133.0 Å, and α=102.6, β=102.7 and γ=104.6°, and they diffracted to 2.2 Å. Crystals of the 2,6-chlorobiphenyl complex were grown in monoclinic space group P2₁ with a=86.7, b=276.8, c=93.3 Å, and β=117.4° and diffracted to comparable resolution (Table 1). The BphAE_{LB400} crystal structure was used as a search model to find initial phases for BphAE_{p4} and provided the initial model, which was subsequently refined to final R and R_{wp} values of 21.4% and 26.6% at a resolution of 2.2 Å. The final refined model contains residues Asn18 to Phe143 plus Phe153 to Pro459 of the α subunit, residues Phe9 to Phe188 of the β subunit, 145 water molecules, and one glycerol molecule. Quantities and statistics characterizing the diffraction data and the refined model are provided in Table 1.

The structure of native BphAE_{p4} is very similar to that of native BphAE_{LB400} wherein triplets of αβ dimers associate to generate four αβ3 hexamers possessing noncrystallographic 3-fold symmetry. Superposition of all Cα atoms for chain AB and chains CD-WX yielded rmsd values of 0.2–0.4 Å², and the average B-factor was 32.6 Å² (Supplementary Table S1). The most disordered residues and protein segments were the same as observed for BphAE_{LB400}, including the segments comprising residues Ile247-Lys263 and Glu280-Val287 of the α subunit and residues 9–17 and 158–164 of the β subunit, as discussed above. In addition, other residues or segments of the α subunit showed variations in position among the 12 dimers. These were His233-His239, Val320-Glu322, Asp388, Lys403-Ala411, and Pro423-Tyr433 (Supplementary Fig. S2i–k). As observed for BphAE_{LB400}, the flexible N-terminal region (residues 9–17 of the β subunit has two conformations. In one type of conformation, this segment interacts with the active-site mouth of an α subunit belonging to a neighboring αβ3 hexamer. This movement is also observed for the native form of BphAE_{p4}. However, in the case of the 2,6-dichlorobiphenyl-bound form of BphAE_{p4}, no dimer interacts with the active-site mouth residue, and all of them exhibit the second conformation (Supplementary Fig. S3b). On the basis of this observation, it can be postulated that conformational variations of the N-terminal portion of the β subunit might influence substrate specificity. However, more data are required to support these hypotheses, and we will not discuss this further in this work. Nevertheless, the role of the β subunit is not yet clearly understood, but in some experiments, the β subunit was found to influence substrate specificity.

The crystal structure of the BphAE_{p4} 2,6-dichlorobiphenyl complex contains triplets of αβ dimers
that associate to generate two (ABCDEFG and GHIJKL) hexamers in the asymmetric unit. 2,6-Dichlorobiphenyl could be identified clearly in difference Fourier maps in the active sites of the ABCDEF hexamer. However, the active sites of the GHIJKL hexamer did not have sufficient density to justify modeling the substrate. The electron density maps of the catalytic center residues of the native BphAE\textsubscript{p4} are shown in Fig. 4.

Comparison of the crystal structures of native and substrate-bound BphAE\textsubscript{p4} and BphAE\textsubscript{L400}

When the six αβ dimers of the BphAE\textsubscript{p4}:2,6-dichlorobiphenyl complex are superposed, the deviations are small in the core region of the molecule (Supplementary Fig. S1b). The most variable segments are the same as for the native BphAE\textsubscript{p4}. Superposition of all Cα atoms for chain AB and chains CD-WX yielded rmsd values of 0.25–0.36 Å, and the average B-factor value was 49.2 Å2 (Supplementary Fig. S2l and m).

When chains AB, CD, and EF of the BphAE\textsubscript{p4}:2,6-dichlorobiphenyl complex were superposed with each other and also with the 12 αβ dimers of the biphenyl complex of BphAE\textsubscript{L400}, it was observed that the orientation of the chlorinated substrate differs from the orientation of biphenyl in BphAE\textsubscript{L400}. The nonreactive ring of 2,6-dichlorobiphenyl is shifted toward Gly321 and Met336 (Fig. 5). This shift is correlated with a change in the placement of the reactive ring of 2,6-dichlorobiphenyl, such that the relationship of carbons C-2/C-3 to Fe is altered. In addition, it appears that the Fe atom and Asp388 withdraw from the substrate (see Fig. 6a) when 2,6-dichlorobiphenyl binds BphAE\textsubscript{p4}. Such a displacement is not observed when BphAE\textsubscript{L400} binds biphenyl (Fig. 6b). An interesting consequence of these movements is that carbons C-2 and C-4 of 2,6-dichlorobiphenyl are positioned at a similar distance from the Fe atom: the distances that separate the ortho, meta, and para carbons of 2,6-dichlorobiphenyl from the iron of BphAE\textsubscript{p4} are, on average, 4.8 Å, 4.5 Å, and 4.9 Å, respectively (Fig. 7). As indicated above, the average distances that separate C-2, C-3, and C-4 of biphenyl from the Fe of BphAE\textsubscript{L400} are 4 Å, 4 Å, and 5 Å, respectively. The fact that C-2/C-3/C-4 of 2,6-dichlorobiphenyl are instead at similar distances from the Fe atom of BphAE\textsubscript{p4} may explain why BphAE\textsubscript{p4} produced a large amount of the 3,4-dihydro-dihydroxy metabolite from 2,6-dichlorobiphenyl.

The corresponding atoms of both substrates interact with the same residues of BphAE\textsubscript{p4} and BphAE\textsubscript{L400} α subunits (Leu333, Phe227, Glu226, His323, His233 Ala230, and Met231), and they are located at similar distances (closer than 4.5 Å) (Supplementary Fig. S3c). Most residues that were closer than 4.5 Å from the distal ring in BphAE\textsubscript{L400} (Phe384, His239, Phe336, Met231, Gly321, and Val287) are at a similar distance from the nonreactive ring of 2,6-dichlorobiphenyl in BphAE\textsubscript{p4} (Supplementary Fig. S3d). As noted above, relative to the BphAE\textsubscript{L400}:biphenyl complex, the nonreactive ring of 2,6-dichlorobiphenyl shifts toward the Val320-Gln322 segment and Met336. As shown in Fig. 5, the Val320-Gln322 segment of BphAE\textsubscript{p4} assumes various conformations in the absence of substrate, indicating that it is less constrained in BphAE\textsubscript{p4} than in BphAE\textsubscript{L400}. This allows displacement on the order of 2 Å during binding to 2,6-dichlorobiphenyl, generating space for the ortho chlorine. This adjustment did not change the cavity volume of BphAE\textsubscript{p4}, as the average cavity volume of the αβ dimers of the native enzyme (as calculated using CASP program) was 1152 Å3 and the average value for dimers GH, IJ, and KL of the complexed enzyme was 1159 Å3.
In addition, relative to BphAELB400, the BphAE_{p4} 280–283 segment shows more variation in conformation in the absence of substrate, and this segment clearly shifts by 1 to 2 Å toward the substrate when BphAE_{p4} binds 2,6-dichlorobiphenyl (Fig. 5). Altogether, either because it is larger than biphenyl or as a result of interaction between the two ortho-chlorine atoms of the nonreactive ring with residues lining the distal catalytic pocket, binding of 2,6-dichlorobiphenyl requires or induces more conformational changes than biphenyl binding. The fact that BphAELB400 poorly catalyzes the oxygenation of 2,6-dichlorobiphenyl suggests that in spite of the large size of its catalytic pocket, the space available near the ortho-chlorines is not sufficient to allow productive binding of this substrate. In fact, automated docking of 2,6-dichlorobiphenyl into BphAELB400 places the nonchlorinated ring into the distal pocket of the enzyme and the chlorinated ring into the proximal pocket. In such “flipped” structures, neither the C-2′/C-3′ nor the C-3′/C-4′ carbons of the chlorinated ring align with C-2/C-3 of the BphAE_{L400}-biphenyl complex, and they are very far from the iron atom (not shown).

Aside from the segments comprising residues Glu280-Ser283 and Val320-Glu322 and residue Asp388, other segments or residues of the α subunit, including Tyr277-Val278, Lys403-Ala411, Gly427-Tyr433, and His233-His239, are displaced after BphAE_{p4} binds to 2,6-dichlorobiphenyl (not shown). However, the possible impact of these movements on the catalytic activity toward 2,6-dichlorobiphenyl is not as readily explained.

Effect of the Thr335-to-Ala mutation

Analysis of the crystal structures of BphAE_{p4} and BphAELB400 suggests how changing Thr335 to Ala alters the conformational freedom of the Val320-Gly321 segment and some of the other segments of the catalytic pocket. In BphAELB400, the hydroxyl group of Thr335 is within 3.0 Å of the amide groups of Gln322 and of Gly321 and within 3.5 Å of C-1 of Val320. In addition, hydrogen bonds are formed between the amide groups of Gly321 and Gln322 and the hydroxyl group of Thr335. Most of these contacts are lost when Thr335 is replaced by Ala (Fig. 8). This appears to relax conformational constraints for the Val320-Gln322 segment, which

Fig. 5. Superposition of active-site atoms from 12 αβ dimers of BphAELB400 (yellow) and 12 biphenyl-bound dimers (red) with 12 αβ dimers of BphAE_{p4} (green) and 6 dimers of 2,6-dichlorobiphenyl-bound BphAE_{p4} (blue) showing the shift of the distal ring of 2,6-dichlorobiphenyl toward Gly321 and Met336.
Fig. 6. (a) Superposition of active-site atoms from 12 BphAE$_{p4}$ (tan) with six 2,6-dichlorobiphenyl-bound BphAE$_{p4}$ (blue) $\alpha$$\beta$ dimers and (b) superposition of 12 BphAE$_{LB400}$ (yellow) with 12 biphenyl-bound BphAE$_{LB400}$ (red) dimers showing the displacement of Asp388 after substrate binding.
allows for greater variation in conformation and displacement of this segment, particularly for the carbonyl group of Gly321. Replacing Thr335 by Ala has other consequences for residues lining the catalytic cavity. Since Gly321 and Val320 form hydrogen bonds with Tyr277, the conformation of the Val320-Gln322 segment influences the conformation of this residue. In addition, although residues Arg318-Met319 do not contact Thr335, their conformation appears to be influenced by the position and orientation of 320–322. Moreover, residues 320–322 can influence indirectly the conformation of the Asn279-Ser283 segment through contacts between the latter and Arg318-Met319 (Fig. 8). Thus, the considerable shift of Ser283 and Glu280 after substrate binding can be linked back to the relaxation of conformational restraints for Val320-Gln322. Another consequence of this movement is to close the mouth of the active site, but it is not clear if this shift is required for productive binding of 2,6-dichlorobiphenyl.

Discussion

Examination of the substrate binding interactions and the structural mechanism by which BPDOs can increase their metabolic versatility will advance approaches to engineer better performing biocatalysts. Many investigations have shown that the specificities and regiospecificities of Rieske-type aryl hydroxylating dioxygenases were altered by changing single residues that crystal structures place near the active site.22,30,31 These studies and many others involving other enzymes30–36 have demonstrated that these changes can alter the configuration of the space within the catalytic pocket. In the case of versatile enzymes such as aryl hydroxylating dioxygenases and cytochromes P450, many of which can oxygenate a broad range of substrates, induced-fit mechanisms are likely to be required to allow productive substrate binding. One mechanism to enhance the capacity for induced fit is to lessen the structural constraints imposed on strategic active-site residues. Residues lining the catalytic cavity that are less constrained are able to change conformation during substrate binding, allowing more space for productive binding of structurally different substrates. Hence, changes induced by substrate binding have been observed for several cytochromes P450.37 Similarly, in the case of ROs, crystallographic studies of NDO,38 nitrotoluene dioxygenase,39 BphA1A2RHA1, as well as BphA1A2B1 and BphAEp4 showed that some of the residues lining the distal
Fig. 8 (legend on next page)
and also the proximal portion of the catalytic pocket can be displaced by substrate binding. Here, structural analysis of native and substrate-bound BphAELB400 revealed conformational variations of the carbonyl group of Gly321, which is in direct, nonbonded contact with substrates. The corresponding residue in BphA1A2RHA1 was also shown to be displaced after substrate binding.16 Our data also reveal how other residues not in direct contact with the substrate, such as Ala335 of BphAEp4, can influence the adaptability of the catalytic pocket of BPDO and thereby allow productive substrate binding. Thus, changing Thr335 to Ala relaxed constraints on the Val320-Thr333 segment, allowing displacement of Gly321 during substrate binding and opening space to position and orient the doubly ortho-chlorinated biphenyl inside the catalytic pocket.

Although Thr335 appears to play a controlling role in the inability of BphAE B-400 to oxygenate 2,6-dichlorobiphenyl, the identity of residue 336 also has significant influence on the reaction because BphAEp4 and BphAEp401 have different regiospecificity toward this substrate. The structures suggest differences in side-chain interactions between Phe336 and Met336 and the distal ring influence the relationship of the reactive ring relative to the Fe. It is noteworthy that the distances from C-2/C-3 to the Fe atom are significantly larger in the BphAEp4:2,6-dichlorobiphenyl complex compared to the distances in the BphAEp4B400:biphenyl complex. In addition, in the BphAEp4:2,6-dichlorobiphenyl complex, the C-2 and C-4 carbons are equidistant from the Fe, which may readily explain the enhanced yield of the 3,4-hydroxylated product in Met336 variants. Similarly, Phe336 and Met336 probably interact differently with 2,2′-dichlorobiphenyl, since the regiospecificity toward this substrate is changed when Phe336 of BphAE B-400 is replaced by Met in BphAEp4 and BphAEp4.

It is also noteworthy that BphAE B-356 and variant BphAEp9, which was obtained by replacing residues 335–341 of BphAE B-400 by the corresponding residues of BphAE B-356, can oxygenate 2,6-dichlorobiphenyl.16 In this case, Thr335-Phe336 of BphAE B-400 are replaced by Gly-Ile, and it is most likely that, similar to BphAEp4, the replacement of Thr335 by a Gly reduces constraints on residues 320–322 to facilitate the movement of Gly321. However, BphAE B-356 and BphAEp9 both produce principally the 2,3-dihydro-2,3-dihydroxy-dichlorobiphenyl from 2,6-dichlorobiphenyl. This suggests that Met336 of BphAEp4 and the corresponding residue of BphAE B-356, Thr333, interact differently with the substrate to influence its orientation inside the catalytic cavity. This would not be surprising given the differences in the chemistry and conformation variations of Met and Thr residues.

We recently examined the diversity of the BphA C-terminal domain as represented by PCR products amplified from various PCB degrading bacteria and from DNA extracted from PCB-contaminated soils. The presence of a Thr at position 335 as in BphAE B-400 was uncommon, and most of the sequences contained the smaller Gly or Ala at that position.40 This leads to the hypothesis that, in most BphAs, the Val320-Gln322 segment is more relaxed than in BphAE B-400. To our knowledge, no study has examined the effect of replacing Gly321 with larger amino acids in the background of BphAE B-400, but additional recent observations emphasized the importance of residue 321 as a determinant for substrate specificity.40,41 Thus, Witzig et al.41 amplified the C-terminal portion of genes encoding the α subunit of toluene/BPDOs from isolates growing on benzene-toluene-ethylbenzene and from soil DNA from which they were isolated. The position corresponding to Gly321 was highly variable. However, the isolates harboring a bulkier amino acid at that position were unable to oxygenate toluene.41

Other residues that line the catalytic cavity were previously found to influence substrate specificity and regiospecificity. Suenaga et al.22 found that changing Phe227, Leu333, Phe377, and Phe383 of Pseudomonas pseudoalcaligenes KF707 BphA1 (BphA1 KF707), corresponding to Phe227, Leu333, Phe378, and Phe384 of BphAE B-400, alter either the range of substrates that the enzyme can oxygenate or the regiospecificity toward ortho-chlorinated biphenyls. Both a homology model of BphA1 KF707 based on BphA1 RHA1 and our crystal structures of BphAE B-400 show that these residues line the catalytic pocket and, thus, may critically influence the enzyme's catalytic properties toward chlorobiphenyls. However, Zielinski et al.23 and Vézina et al.42 identified other residues that are not expected to be in direct contact with the substrate but significantly modified the specificities and/or regiospecificities toward selected substrates. Perhaps some of these residues influence the catalytic properties indirectly by controlling the position and/or conformation of residues lining the catalytic cavity or by altering the level of constraint imposed on protein segments lining the catalytic cavity to allow more movement during substrate binding. The case of Asn377 is of particular interest, since the variant obtained by replacing the corresponding Thr376 of BphA1 KF707 by Asn of

Fig. 8. (a) Superposition of segments of dimer AB of BphAE B-400 and its biphenyl-bound form and (b) superposition of the corresponding segments of dimer KL of BphAEp4 and dimer AB of its 2,6-dichlorobiphenyl-bound form. Both bound forms of BphAE B-400 and BphAEp4 are in yellow; native forms are in red. Dashed lines represent H-bonds of substrate complex forms (green) and native forms (red); spheres represent water molecules.
BphA_E had the ability to oxygenate 2,2',5,5'-tetrachlorobiphenyl into carbon atoms 3 and 4. An analysis suggested that the loss of a hydrogen bond involving the hydroxyl residue of Thr376 with the carbonyl of Asn373 could be responsible for the different regiospecificities between wild-type BphA_{KF707} and its Thr376Asn variant. However, in the absence of crystal structures of BphA_{2Kil707} and the variant, the authors were unable to explain how the loss of this hydrogen bond influenced the catalytic properties of the enzyme. Since Phe378 (Phe377 of BphA_{KF707}) is close to carbon atoms 3 and 4 of biphenyl's meta ring, it is possible that the relaxation of constraints on residues 376–377 of BphA_{Kil707}, associated with loss of the hydrogen bond, allows an adaptive response centered on Phe377, which creates more space to accept and position the doubly ortho-tetrachlorinated congener.

The results obtained in this work increase our understanding of how amino acid residues within and outside the active-site pocket can affect substrate specificity and enzyme activity. Data show how the mutations directed at residues further removed from the substrate can influence the enzyme's specificities. Consistent with induced-fit mechanisms, these mutations can modulate the spatial distribution of residues in direct contact with the substrate or influence the binding-induced changes required to place chlorobiphenyls into productive positions and orientations. Additional effort will be required to determine the precise mechanisms by which additional residues not in direct contact with the substrate influence the enzyme's specificities. At a fundamental level, our results plead in favor of engineeringaryl hydroxylating enzymes through artificial evolutionary approaches that alter all or specific protein segments in the vicinity of the catalytic cavity instead of changing individual residues that are in direct contact with the substrate.

Materials and Methods

Strains, plasmids, and chemicals

E. coli DH11S and C41(DE3) (Statagene, La Jolla, CA) were used in this study. The plasmids used were pT7-6a, pET14b[p_{4-bphAE}] and pET14b[
LB400-bphAE], pQE31[
LB400-bphAE], and pQE31[p_{4-bphAE}]. Biphenyl and the chlorobiphenyls used in this work were of the highest purity grade available from AccuStandard (New Haven, CT).

Mutagenesis and cloning

The mutated genes for variants BphAE_{p401} (T335A) and variant BphAE_{p402} (F336M) were prepared from LB400 bphAE by the two-step site-directed mutagenesis protocol described previously, creating pQE31[
LB400-bphAE_{p401}] and pQE31[LB400-bphAE_{p402}]. The resulting plasmids were transformed into E. coli DH11S pDB31 [LB400-bph_{FG}]. DNA protocols were generally according to Sambrook et al. DNA from each mutant was sequenced at the Génome Québec DNA Sequencing Center (Montreal, Quebec, Canada).

Whole-cell assays to identify metabolites of chlorobiphenyls

Metabolites were analyzed from suspensions of IPTG-induced E. coli DH11S pDB31[LB400-bph_{FG}] harboring appropriate variants of pQE31[bphAE] according to a previously described protocol. Level of expression was assessed by inspection of SDS-PAGE gels. Metabolites were identified by GC-MS analyses of their butylboronate derivatives. GC-MS peak areas were used to determine the relative activity of each variant enzyme.

Crystalization and crystallographic methods

Purification, crystallization, and preliminary X-ray diffraction properties of BphAE_{LB400} and BphAE_{p4} have been communicated elsewhere. In brief, crystallization conditions for BphAE_{LB400} and BphAE_{p4} were screened by the sitting-drop vapor-diffusion method at 21 °C under a N₂ atmosphere (<5 ppm oxygen) in a glove box (Innovative Technologies, Newburyport, MA). BphAE_{LB400} crystals grew in triclinic space group
P₁ with 12 αβ dimers (i.e., four αβ3 hexamers) in the asymmetric unit at 21 °C when the reservoir solution (1000 μl) contained 20–25% (w/v) polyethylene glycol (PEG)-8000 or PEG 5000 MME, 50 mM Pipes (pH 6.5), 100 mM ammonium acetate, 5% (v/v) glycerol, and 0.2% (w/v) agarose. BphAE_{p4} grew in two different crystal forms at 21 °C using a reservoir solution (1000 μl) containing 20–25% (w/v) PEG 8000, 50 mM Pipes (pH 6.5), and 100 mM ammonium acetate. In the absence of substrate, BphAE_{p4} enzyme crystallized in triclinic space group P₁ with 12 αβ dimers in the asymmetric unit, whereas crystals of the BphAE_{p4}2,6-dichlorobiphenyl complex are monoclinic space group P₂ with six αβ dimers in the asymmetric unit.

Diffraction data were acquired from cryogenically cooled crystals (100 K) using the facilities of SERCAT beamline 22-4D at the Advanced Photon Source (Argonne National Laboratories). The diffraction patterns were indexed, integrated, and scaled using the HKL2000 suite. Initial phases for BphAE_{LB400} were obtained by the molecular replacement method using MOLREP from the CCP4 v.4.2 software suite. In the case of BphAE_{LB400}, the crystal structure of BphAE_{LB400} was used as the search model. Atomic model refinement was accomplished using the program CNS and REFMAC5. The programs O and COOT were used for analysis of electron density maps and model building. Stereochemical properties of models were evaluated using Procheck and Ramachandran plots. Several cycles of rigid-body refinement and then restrained refinement were used to achieve acceptable
R_{cryst} and R_{free}. The
CASTp program,27 which is available online,‡ was used to calculate the catalytic cavity volume using a probe radius of 1.4 Å. Figures were prepared using the program PyMOL.

PDB accession codes

The coordinates have been deposited with the RCSB Protein Data Bank§ under accession codes 2xr8 for PDB accession codes BphAE\textsubscript{LB400} and 2xrx for its biphenyl-complex form and 2xso for BphAE\textsubscript{L4} and 2xsh for its complex with 2,6-dichlorobiphenyl.

Acknowledgements

This work was supported by Discovery and Strategic grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). Use of the BioCARS Sector 14 at the Advanced Photon Source (APS), Argonne National Laboratory, was supported by the National Institutes of Health, National Center for Research Resources, under grant number RR007707. Additional X-ray diffraction data were collected at APS using Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline; supporting institutions may be found at http://www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38.

Supplementary Data

Supplementary data to this article can be found online at doi:10.1016/j.jmb.2010.11.009

References

‡http://sts.bioengr.uic.edu/castp/index.php
§http://deposit.rcsb.org/

