Contents

Keynote Talk
 Multiple orthogonal polynomials and applications in quadrature and wavelets
 Walter Van Assche .. 1

Plenary Talks
 Recent Trends on the Bohr inequality
 R. Balasubramanian .. 3
 On Univalent Harmonic Mappings
 S. Ponnusamy .. 4
 CMV matrices, Direct and Inverse problems, Applications
 Francisco Marcellán .. 5
 Sobolev orthogonal polynomials on the unit circle and coherent pairs of measures of the
 second kind
 A. Sri Ranga ... 5
 An extension problem for the sublaplacian on the Heisenberg group
 S. Thangavelu .. 5
 Hypergeometric Functions in several variables
 Siddhartha Sahi .. 6
 Convexity of Spherical Bernstein-Bezier Patches and Circular Bernstein-Bezier Curves
 Tian-Xiao He and R.N. Mohapatra 6
 On a Degenerate Algebraic Riccati Equation
 S. Kesavan .. 7
 Further extensions to the Bohr inequality
 Rosihan M. Ali .. 7
 Orthogonal Polynomials Everywhere
 Mourad E. H. Ismail ... 7
 Integrable Systems, Orthogonal Polynomials and Random Matrices
 Peter Clarkson .. 8

Invited Talks
 Zeros of Bessel Function Derivatives
 Árpád Baricz .. 9
 Exceptional Orthogonal Polynomials
 David Gómez-Ullate .. 9
 Gamma Functions and Complex Analysis
 Henrik L. Pedersen ... 10
 Fragmentation-coagulation equations with diffusion
 Jacek Banasiak .. 10
Properties of generalized Freud polynomials
Peter Clarkson and Kerstin Jordaan 11
Convolutions with harmonic strip mappings
Michael Dorff .. 11
Generalized typically real functions
Stanisława Kanas .. 12
Differential Subordinations and Superordinations for Analytic Functions
Teodor Bulboacă ... 12
What can the three term recurrence relation tell us about orthogonal polynomials?
T. S. Chihara .. 13
Dunkl Processes: Relaxation Asymptotics and Jump Dynamics
Sergio Andraus .. 14
Logarithmic convexity and concavity of generalized hypergeometric functions with respect
to multiple parameter shifts
Dmitrii Karp .. 14
Some Aspects of Harmonic Univalent Map
Yusuf Abu Muhanna ... 15
An Eclectic tour of Gamma Functions
G.K. Srinivasan ... 15
On Quasi-Optimization Problems
V. Vetrivel .. 15
M-operators and some characterizations
K.C. Sivakumar .. 15
Homogenization of a Hyperbolic equation in a Composite Media
Nandakumaran, A.K. ... 16
Applications of Hamilton-Jacobi equations in Shape from Shading
G.D. Veerappa Gowda .. 16
An Operator Theoretic Treatment for an Inverse Problem in PDE
M.T. Nair ... 16
Local polynomial convexity of certain classes of surfaces with degenerated CR-singularity
Sushil Gorai .. 17
Module Approach to Operator Theory
Jaydeb Sarkar .. 17
Short Talks .. 19
Frequency Truncation Method for Symmetrizable Hyperbolic Systems
Manil T. Mohan ... 19
Symmetries of generalized Laplace and Dirac operators
Hendrik De Bie, Roy Oste and Joris Van der Jeugt 20
Reciprocity Theorems Involving the q-Gamma Function
Mohamed El Bachraoui and James Griffin 20
Multichannel transmission based on prolate spheroidals
Marek A. Kowalski ... 21
The Orthogonal Polynomial system on (-1,1) corresponding to a modified gegenbauer weight
function
S. Janakiraman ... 22
Group Inverse Extensions of Certain M-matrix Properties
Synchrosqueezing Transform on a Hyperbolic Chirp
Ratikanta Behera and Sylvain Meignen 23
The Grüss inequality for unital 2-positive linear maps

Sriram Balasubramanian .. 24

Absolutely minimum attaining Closed Operators

S.H. Kulkarni and G. Ramesh 24

Eigenvalues Estimates for Hadamard product of Hermitian Matrices

G. Sankara Raju Kosuru ... 24

On certain q-series & Continued Fractions

S. Ahmad Ali .. 24

Some Variations on Montel’s Theorem

K.S. Charak .. 25

Composition Operators between Musielak-Orlicz Spaces

Romesh Kumar ... 25

Recent Developments in Planar Harmonic Mappings

S.B. Joshi ... 25

Multi-penalty regularization in learning theory

Sivananthan Sampath ... 26

Hybrid Sheffer-Appell Polynomials

Subuhi Khan ... 26

Inverse problems of Calderon type

Venky Krishnan .. 26

Neighbourhoods of univalent functions

Bappaditya Bhowmik ... 27

A Positive Spectral Gradient-Like Method for Large-Scale Nonlinear Monotone Equations

Auwal Bala Abubakar ... 27

A null controllability result for fully nonlinear evolution equations

Omar BENNICHE ... 27

Alternating Iterative Method for Rectangular Matrices

Debasisha Mishra .. 28

Abelian Theorem Involving Bessel Wavelet Transform

S.K. Upadhyay and Reshma Singh 29

Semilocal convergence of a computationally efficient iterative method in Banach spaces under weak condition

J.P. Jaiswal .. 29

On some properties of extended Wright type hypergeometric function

Ranjan Kumar Jana .. 31

γ-Hyperconnectedness in Fuzzy Topological Spaces

B. Bhattacharya ... 31

Extension of Laguerre Transform and its Applications

Ajay Shukla ... 31

On q-series, Split $(n + t)$-color partitions and 2-color F-partitions

M. Rana ... 32

Bounds for Radii of Starlikeness and Convexity of some Special Functions

Ibrahim Aktaş, Árpád Baricz and Nihat Yağmur 32

Geometric properties of regular Coulomb wave functions

Árpád Baricz, Murat Çağlar, Erhan Deniz and Evrim Toklu 33

Radii of starlikeness and convexity of a cross-product of Bessel functions

Árpád Baricz and Nihat Yağmur 33
A Spectral Gradient Conjugate Gradient Algorithms for Large-Scale Non-linear Systems of Equations

Hassan Mohammad ... 34

On logarithmic coefficients of close-to-convex functions

Vasudevarao Allu ... 35

Contributory Talks .. 37

Duality Techniques on a class of functions defined by convolution with Gaussian hypergeometric functions

Navneet Lal Sharma ... 37

Removable sets for Sobolev, Orlicz-Sobolev and weighted Orlicz-Sobolev spaces

Nijjwal Karak ... 37

Local Convergence of Super Halley’s method under weaker condition on Fréchet derivative in Banach Spaces

Abhimanyu Kumar and D.K. Gupta .. 38

Truncated spectral regularization method for source identification in an abstract Cauchy problem

Ajoy Jana and M.T. Nair ... 38

Weighted Fractional composition operators on certain function spaces

D. Borgohain and S. Naik ... 39

The Bounded Approximation Property for the Predual of the Weighted Space of Holomorphic Mappings on Banach Spaces

Deepika and Manjul Gupta ... 39

Quasiconformal Extension of Meromorphic Functions with nonzero Pole

Bappaditya Bhowmik, G. Satpati and T. Sugawa .. 40

The Distributional continuous Fractional generalized Hankel-Clifford Transformation

V. R. Lakshmi Gorty ... 40

Open Ball centered at an invertible element of a Banach Algebra

Geethika Sebastian and D Sukumar .. 40

Semilocal convergence of two step Kurchatov method for nondifferentiable operator

Himanshu Kumar and P.K.Parida .. 41

Existence Results for Sobolev type fractional integro-differential equation with fractional nonlocal conditions

Renu Chaudhary ... 41

Approximate Controllability of Semilinear Fractional Stochastic System of Order \(\rho \in (1, 2] \) with Nonlocal Conditions

Urvashi Arora ... 42

Kantorovich type modification of \(q- \) Bernstein-Schurer operators

A.R. Gairola and K.K. Singh .. 42

Data visualization by Rational fractal function based on function values

K.M.Reddy, A.K.B.Chand and P.Viswanathan .. 42

\(\{T, S\} \) Splittings of Rectangular Matrices Revisited

K. Appi Reddy and T. Kurmayya .. 43

Third Hankel Determinant for Generalized Sakaguchi functions

C. Ramachandran and K. Dhanalakshmi .. 43

Toeplitz Determinant for Some Subclasses of Analytic Functions

C. Ramachandran and D. Kavita .. 43

Inverse Problems for Wave Equation in 3-D with under-determined Data

Mannmohan Vashisth ... 44
On Inverse Coefficient Estimates for Certain Starlike Functions
Md Firoz Ali and Vasudevarao Allu ... 44

Application of Semigroup theory for the Pure Fragmentation equation
Nilima Das, Jitraj Saha and Jitendra Kumar 44

On Some Subclass of Harmonic Close-to-convex Mappings
Nirupam Ghosh and Vasudevarao Allu 45

On Coefficient problem for bi-univalent analytic functions
Nisha Bohra ... 45

Pick functions involving triple gamma function
Sourav Das ... 45

On perturbations of g-fractions and some related consequences
Kiran Kumar Behera ... 46

On wavelet induced isomorphisms for joint $(d, -d)$-dilation wavelet and multiwavelet sets
Pooja Singh .. 46

Iterative Approximation method with Averaged mapping for finite family of equilibrium problem and fixed point problem
Prashanta Majee and Chandal Nahak .. 46

The wavelet packet transformation involving the fractional powers of Hankel-type integral transformation
Akhilesh Prasad and P.K. Maurya ... 47

Operators and Multipliers on Weighted Bergman Spaces
S. Naik and K. Rajbangshi ... 47

Bounding inequalities for the generalized Voigt function
Rakesh K. Parmar .. 47

Analysis of plane wave propagation under fractional order thermoelasticity
Rakhi Tiwari and Santwana Mukhopadhyay 48

Bessel wavelet Convolution Involving Hankel Transform
S. K. Upadhyay and Reshma Singh ... 48

An Exact Smooth Convex Reformulation of the Quadratic Programme
Rudrajit Sadhu and C. Nahak .. 48

Turán type inequalities for some special functions
Árpád Baricz, Saminathan Ponnusamy and Sanjeev Singh 49

Weighted pseudo Almost periodic solutions for two-term time fractional impulsive differential equations
Vikram Singh .. 49

An extension of Vietoris’ inequalities for positivity of trigonometric polynomials
Priyanka Sangal .. 50

Estimates for Coefficients of certain Analytic Functions
Shelly Verma .. 50

Galerkin method for fractional integro-differential equations with weakly singular kernel
Shiva Sharma and Kamlesh Kumar .. 51

Quasi-continuity on Product Spaces
V. Srinivasa Kumar .. 51

Convolution properties of a Harmonic function with n-Starlike mappings and its partial sums
Subzar Ahmad Beig .. 51

Generalized vector valued paranormed sequence space using Orlicz function
P.D. Srivastava and Sudhanshu Kumar 52

Subordination Properties for Starlike Exponential functions
Sushil Kumar ... 52
On Wavelet Induced Isomorphisms for Reducing Subspaces

Swati Srivastava .. 53

Common Fixed Point Theorems for two Selfmaps in a Complete D*- metric spaces

Upender Samudrala .. 53

Level sets of (P, Q) outer generalized Pseudo Spectrum

D. Sukumar and S. Veeramani 53

Bounds for the second Hankel Determinant and the Fekete-Szego Coefficient Functional of Certain Analytic Functions

Kanika Khatter .. 54

Common fixed Point Theorem for α-Z- contraction and Applications to ODE and Dynamic Programming

G.V.V. Jagannadh Rao, S.K. Padhan and Hemant Kumar Nashine 54

Quasi-orthogonality of some Basic Hypergeometric Polynomials

P. Gochhayat, K. Jordaan and P.P. Kar .. 55

Certain q-Series Identities and Applications to Lecture Hall Type Partitions

K. Raghavendar .. 56

On the degree of approximation of functions in a weighted Lipschitz class by almost matrix means of their fourier series

Arti .. 56

Approximation of f, conjugate function of f belonging to a subclass of Lp-space, by product means of conjugate Fourier series

SoshaI .. 56

On some coefficient Bounds associated with k-th root transformation using Quasi-Subordination

C. Ramachandran, T. Soupramanien and J. Sokół .. 57

Transformation of LQR Problem for Descriptor System to LQR problem for State Space System

Vikas Kumar Mishra and Nutan Kumar Tomar 57

On the Distribution of Non-Zero Zeros of Generalized Mittag-Leffler Functions

Hemannt Kumar and M. A. Pathan .. 58

Two Fixed Point Theorems for Non-Expansive Mappings

Anushri A. Aserkar and M. P. Gandhi .. 58

On Algebraic Properties of Horizontally Quasi-continuous Functions

Bhagath Kumar Soma and V. Srinivasa Kumar .. 58

Trajectory controllability of fractional-order α ∈ (1, 2] integro-differential system with non-local condition

V. Srinivasan .. 59

Existence and Concentration of Solutions for a Class of Elliptic PDE’s involving p-biharmonic Operator

Ratan Kr Giri, Debajyoti Choudhuri and Shesadev Pradhan 59

Common Fixed point theorem in Intuitionistic Menger spaces by using implicit relation with the property CLRST

Dilip Kumar Gupta and Naval Singh .. 60

Spectral Theorem for Quaternionic Compact Normal Operators

G. Ramesh and P. Santosh Kumar .. 61

Extension of Prefunctions and its relation with Mittag-Leffler function

A. P. Hiwarekar .. 61
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium problems under generalized monotonicity in FC spaces</td>
<td>61</td>
</tr>
<tr>
<td>Gayatri Pany, Sabyasachi Pani and R.N.Mohapatra</td>
<td></td>
</tr>
<tr>
<td>Stability criteria for uncertain 2 − 1\2D discrete systems in presence of generalized overflow nonlinearities</td>
<td>62</td>
</tr>
<tr>
<td>Siva Kumar Tadepalli, V. Krishna Rao Kandanvli and Abhilav Vishwakarma</td>
<td></td>
</tr>
<tr>
<td>Non-linear stability of Triangular libration points in elliptic restricted three body problem with radiating and triaxial primaries</td>
<td>62</td>
</tr>
<tr>
<td>T. Usha and Ashutosh Narayan</td>
<td></td>
</tr>
<tr>
<td>Weak solutions to generalized stochastic Burgers’ equation perturbed by a space-time white noise</td>
<td>63</td>
</tr>
<tr>
<td>Vivek Kumar</td>
<td></td>
</tr>
<tr>
<td>Certain Subclasses of Bi-Univalent functions Associated with Salagean Operator</td>
<td>63</td>
</tr>
<tr>
<td>A. L. Pathak, Saurabh Porwal and R. Agarwal</td>
<td></td>
</tr>
<tr>
<td>Convolutions in time dependent heat conduction equations</td>
<td>64</td>
</tr>
<tr>
<td>Arcadii Z. Grinshpan and Shelly Arora</td>
<td></td>
</tr>
<tr>
<td>Robin Boundary value problems for a singularly Perturbed weakly coupled system of Convection-Diffusion equations having discontinuous source term</td>
<td>64</td>
</tr>
<tr>
<td>S. Chandra Sekhara Rao and Sheetal Chawla</td>
<td></td>
</tr>
<tr>
<td>Solutions to abstract Volterra Integro-Differential equation with repeated deviating arguments</td>
<td>64</td>
</tr>
<tr>
<td>Rajib Haloi</td>
<td></td>
</tr>
<tr>
<td>Iterative roots of Continuous functions with Non-isolated Forts</td>
<td>65</td>
</tr>
<tr>
<td>V. Murugan and M. Suresh Kumar</td>
<td></td>
</tr>
<tr>
<td>Hyers-Ulam Stability of a Semiclosed Operator</td>
<td>65</td>
</tr>
<tr>
<td>S. Balaji</td>
<td></td>
</tr>
<tr>
<td>Convolution properties of some harmonic mappings in the right half-plane</td>
<td>65</td>
</tr>
<tr>
<td>Raj Kumar, Michael Dorff, Sushma Gupta and Sukhjit Singh</td>
<td></td>
</tr>
<tr>
<td>Partial sums of Wright function</td>
<td>66</td>
</tr>
<tr>
<td>Deepak Bansal and Halit Orhan</td>
<td></td>
</tr>
<tr>
<td>Trajectory Controllability of Fractional differential Systems of Order α ∈ (1, 2] with Deviated Argument</td>
<td>66</td>
</tr>
<tr>
<td>M. Muslim and Avadhesh Kumar</td>
<td></td>
</tr>
<tr>
<td>The existence of instantaneous gelation to the nonlinear continuous Smoluchowski coagulation equation</td>
<td>66</td>
</tr>
<tr>
<td>Prasanta Kumar Barik</td>
<td></td>
</tr>
<tr>
<td>A discontinuous finite volume approximation for the optimal control of the Brinkman equations</td>
<td>67</td>
</tr>
<tr>
<td>Sarvesh Kumar, Ricardo Ruiz-Baier and Ruchi Sandilya</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>69</td>
</tr>
</tbody>
</table>
Keynote Talk

Multiple orthogonal polynomials and applications in quadrature and wavelets

Walter Van Assche
Chair, SIAM-OPSF activity group and Katholieke Universiteit Leuven, Leuven, Belgium
E-mail: walter.vanassche@wis.kuleuven.be

Multiple orthogonal polynomials are polynomials in one variable that satisfy orthogonality conditions with respect to several measures. I will briefly give some general properties of these polynomials (recurrence relation, zeros etc.). These polynomials have recently appeared in many applications, such as number theory, random matrices, non-intersecting random paths, integrable systems etc. I will speak about two applications. The first is an extension of the Gauss quadrature formula for integrating a function, to simultaneous quadrature where one wants to integrate one function with respect to several measures. The second application is the construction of multiwavelets by means of polynomials, which uses Legendre polynomials and multiple orthogonal polynomials known as Legendre-Angelesco polynomials.
The classical Bohr’s theorem deals with determining the largest radius r, $0 < r < 1$, such that $\sum_{n=0}^{\infty} |a_n|r^n \leq 1$ holds whenever $\sum_{n=0}^{\infty} a_nz^n$ converges and bounded by 1 in the unit disk D of the complex plane. The exact value of this largest radius, known as the Bohr radius, has been established to be $1/3$. We shall discuss some recent issues and extension of this idea in various fields.

In particular, Balasubramanian [1] et al. extended the Bohr inequality to the setting of Dirichlet series and thereby the authors bring the Bohr phenomenon back to its origins since Bohr radius for power series on the disk originated from studying problems on absolute convergence in the theory of Dirichlet series.

For $1 \leq p < \infty$, let D^p be the space of ordinary Dirichlet series consisting of $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ in $H = \{ s = \sigma + it : \sigma > 0 \}$ corresponding to the Hardy space of order p. The space D^p is the completion of the space of Dirichlet polynomials $P(s) = \sum_{n=1}^{N} a_n n^{-s}$ in the norm

$$
\|P\| = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |P(it)|^p \, dt \right)^{1/p},
$$

which is equivalent to requiring $\sum |a_n|^2 < \infty$ when $p = 2$. The space D^∞ consists of the space of Dirichlet series as above with $\|f\|_\infty := \sup\{|f(s)| : \sigma = \text{Re}s > 0\} < \infty$. Then the Bohnenblust-Hille theorem [2] takes the form

Theorem: The infimum of ρ such that $\sum_{n=1}^{\infty} |a_n|n^{-\rho} < \infty$ for every $\sum_{n=1}^{\infty} a_n n^{-s}$ in D^∞ equals $1/2$.

For $k \geq 1$, let D^∞_k denote the subspace of D^∞ consisting of $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ such that $a_n = 0$ whenever the number of prime divisors of n exceeds k. If $(E, \|\cdot\|)$ is a Banach space of Dirichlet series, the isometric Bohr abscissa and the isomorphic Bohr abscissa are respectively defined as

$$
\rho_1(E) = \min \left\{ \sigma \geq 0 : \sum_{n=1}^{\infty} |a_n|n^{-\sigma} \leq \|f\| \text{ for all } f \in E \right\},
$$

and

$$
\rho(E) = \inf \{ \sigma \geq 0 : \exists \, C_\sigma \in (0, \infty) \text{ such that } \sum_{n=1}^{\infty} |a_n|n^{-\sigma} \leq C_\sigma \|f\| \text{ for all } f \in E \}. \quad \text{(3)}
$$

By using a number of recent developments in this topic (some of them related to the hypercontractivity properties of the Poisson kernel), the authors in [1] obtained among others the following results:
(1) If $1 \leq p < \infty$, then $\rho(D^p) = 1/2$, but this value is not attained. For $p = \infty$, this is equivalent to determining the maximum possible width of the strip of uniform, but not absolute, convergence of Dirichlet series (see Theorem).

(2) $\rho(D^\infty) = 1/2$, and this value is attained. So $\sum_{n=1}^{\infty} |a_n| n^{-1/2} \leq C \|f\|_\infty$ for some absolute constant C (see Theorem).

(3) Let $p \in [0, 1]$. Every $f(s) = \sum_{n=1}^{\infty} a_n n^{-s} \in D^\infty$ satisfies $\sum_{n=1}^{\infty} |a_n n^{-\sigma}|^p < \infty$ whenever $\sigma \geq \sigma_0 := 1/p - 1/2$. If $\sigma < \sigma_0$, there is $f \in D^\infty$ such that the last sum is infinite.

(4) $\rho(D^\infty_k) = 1/2 - 1/(2k)$, and it is attained.

(5) $\rho_1(D^\infty_1) = 0$.

(6) $1.5903 < \rho_1(D^\infty_2) < 1.5904$.

(7) $1.585 < \log 3/\log 2 \leq \rho_1(D^\infty) \leq 1.8154$. In particular, $\sum_{n=1}^{\infty} |a_n| n^{-2} \leq \|f\|_\infty$.

References

On Univalent Harmonic Mappings
S. Ponnusamy

ISI Chennai, India
E-mail: samy@isichennai.res.in

In this lecture, we plan to consider certain basic issues concerning the class \mathcal{H} of sense-preserving harmonic functions $f = h + \overline{g}$ defined in the unit disk $|z| < 1$ and normalized so that $h(0) = 0 = h'(0) - 1$ and $g(0) = 0$, where h and g are analytic in the unit disk. In the first part of the lecture, we review a number of known results and open problems including some recent advances concerning harmonic analog of number of problems on conformal mappings. As applications, we study the harmonic sections (partial sums)

$$s_{n,n}(f)(z) = s_n(h)(z) + s_n(g)(z)$$

of $f = h + \overline{g} \in \mathcal{H}$, where $s_n(h)(z) = z + \sum_{k=2}^{n} a_k z^k$ and $s_n(g)(z) = \sum_{k=1}^{n} b_k z^k$ denote the n-th partial sums of $h(z) = \sum_{k=1}^{\infty} a_k z^k$ and $g(z) = \sum_{k=2}^{\infty} b_k z^k$, respectively.

Some open problems will be discussed.

The lecture is based on a number of joint works with Shaolin Chen, Sergey Yu. Graf, Liulan Li, Sairam Kaliraj, Jinjing Qiao and Victor Starkov.
CMV matrices, Direct and Inverse problems, Applications

Francisco Marcellán
Departamento de Matemáticas, Universidad Carlos III de Madrid and Instituto de Ciencias Matemáticas (ICMAT)
E-mail: pacomarc@ing.uc3m.es

In this talk we will analyze matrix representations of the multiplication operator for probability measures supported on the unit circle. In particular, we will focus our attention on the CMV matrix, with a special emphasis on the spectral linear perturbations for the corresponding measure. The study of the direct and inverse Darboux transformations of CMV matrices will be studied.

Some applications to integrable systems will be also discussed.

Sobolev orthogonal polynomials on the unit circle and coherent pairs of measures of the second kind

A. Sri Ranga
DMAp/IBILCE, UNESP - Universidade Estadual Paulista
E-mail: ranga@ibilce.unesp.br

A pair of non trivial probability measures \((\mu_0, \mu_1)\), both supported on the unit circle, is known as a coherent pair of measures on the unit circle if the corresponding sequences of monic orthogonal polynomials \(\{\Phi_n(\mu_0; z)\}_{n \geq 0}\) and \(\{\Phi_n(\mu_1; z)\}_{n \geq 0}\) satisfy the relation

\[
\begin{align*}
n \Phi_n - \phi_1(\mu_1; z) &= \Phi_n'(\mu_0; z) + \rho_n \Phi_n'(\mu_0; z), \\
n \geq 1,
\end{align*}
\]

We refer to a pair of non trivial probability measures \((\mu_0, \mu_1)\) supported on the unit circle as a coherent pair of measures of the second kind on the unit circle if the corresponding sequences of monic orthogonal polynomials satisfy

\[
\begin{align*}
n^{-1} \Phi_n'(\mu_0; z) &= \Phi_n(\mu_1; z) - \chi_n \Phi_n(\mu_1; z), \\
n \geq 2,
\end{align*}
\]

It turns out that there are more interesting examples of pairs of measures on the unit circle with this latter coherency property. The main objective in this contribution is to show how one can determine such pairs of measures. Properties of the orthogonal polynomials with respect to the Sobolev inner products associated with coherent pairs of measures of the second kind are also explored.

(This is a joint work with F. Marcellán.)

An extension problem for the sublaplacian on the Heisenberg group

S.Thangavelu
IISc Bangalore, India
E-mail: veluma@math.iisc.ernet.in

There are several ways of defining fractional powers of the sublaplacian on the Heisenberg group \(H^n\) and one of them is by solving an elliptic differential equation on the one dimensional extension of \(H^n\). In this method, fractional powers of the sublaplacian occur as the Neumann boundary values of solutions of the extended equation. We make use of this connection to prove a trace Hardy inequality for fractional powers of the sublaplacian from which Hardy type inequality can be deduced.
Hypergeometric Functions in several variables

Siddhartha Sahi
Rutgers University, New Jersey, USA
E-mail: sahi@math.rutgers.edu

Hypergeometric functions for symmetric matrices were introduced in the 1950’s by C. Herz, building on earlier work of S. Bochner for Hermitian matrices. These functions have found applications in several areas, including a) in number-theory, to the problem, first investigated by C. Siegel, of lattice point counting for matrices, b) in statistics, to the study of non-central distributions, c) in physics, to exactly solvable models and random matrix theory.

In an influential though unpublished manuscript I. G. Macdonald developed a theory of multivariate hypergeometric functions depending on a parameter, which simultaneously generalizes the symmetric and Hermitian cases and many others besides. However key results of this more general theory have remained conjectural for over 25 years. I will describe recent work with G. Olafsson that proves several conjectures of Macdonald, and which serves to put the theory on a more solid footing.

Among other results we obtain sharp kernel estimates that allow us to establish a rigorous theory of the Fourier and Laplace transforms in this setting. This opens the door for several future developments in the associated harmonic analysis, some of which we treat, including a version of the Paley-Wiener theorem, the construction of multivariate hypergeometric functions via the Laplace and inverse Laplace transforms, and an extension of the Ramanujan master theorem.

Convexity of Spherical Bernstein-Bezier Patches and Circular Bernstein-Bezier Curves

Tian-Xiao He1 and R.N. Mohapatra2
1Illinois Wesleyan University Bloomington, Illinois, USA
E-mail: the@iwu.edu
2University of Central Florida Orlando, Florida, USA
E-mail: ramm1627@gmail.com, ram.mohapatra@ucf.edu

The object of this paper is to discuss the criteria of convexity of spherical Bernstein-Bezier patches, circular Bernstein-Bezier curves and homogeneous Bernstein-Bezier polynomials.

References

On a Degenerate Algebraic Riccati Equation

S. Kesavan
Visiting Professor, IIT Madras, Formerly of IMSc, Chennai
E-mail: kesh@imsc.res.in, kesh@cmi.ac.in

The existence of solutions to a degenerate algebraic Riccati equation, associated to an optimal control problem with infinite time horizon, is studied. Under some assumptions on the control system, we can select a solution to this equation providing a feedback control law which can stabilize the system.

Further extensions to the Bohr inequality

Rosihan M. Ali
School of Mathematical Sciences, Universiti Sains Malaysia, Penang
E-mail: roshihan@usm.my

The classical Bohr inequality deals in finding the largest radius \(r, 0 < r < 1 \), such that \(\sum_{n=0}^{\infty} |a_n|r^n \leq 1 \) holds whenever \(|\sum_{n=0}^{\infty} a_nz^n| \leq 1 \) in the unit disk \(U \) of the complex plane. The exact value of this largest radius, known as the Bohr radius, has been established to be \(1/3 \). Thus \(d \left(\sum_{n=0}^{\infty} |a_nz^n|, |a_0| \right) \leq d(f(0), \partial U) \) for every analytic self-map \(f \) of the unit disk, where \(d \) is the Euclidean distance, and \(|z| \leq 1/3 \).

We find the Bohr radius for certain power series in \(U \). The Bohr radius is also studied for analytic functions from \(U \) into specified domains \(\Omega \), in particular, when \(\Omega \) is a concave wedge-domain. The analogous Bohr radius is also studied for harmonic and log-harmonic mappings in \(U \).

The Bohr phenomenon which is described in terms of the Euclidean distance will be further investigated using the spherical chordal metric and the Poincare metric.

Orthogonal Polynomials Everywhere

Mourad E. H. Ismail
University of Central Florida, Orlando USA
E-mail: mourad.eh.ismail@gmail.com, ismail@math.ucf.edu

This is a general talk about several concrete problems whose formulation does not involve orthogonal polynomials but orthogonal polynomials play a central role in their solution.
In this talk I shall discuss the relationship between integrable systems, in particular the Painlevé equations and discrete Painlevé equations, orthogonal polynomials with respect to semi-classical weights, which are generalizations of the classical weights and random matrices.

It is well-known that orthogonal polynomials satisfy a three-term recurrence relation. I will show that for some semi-classical weights the coefficients in the recurrence relation can be expressed in terms of Hankel determinants, which are Wronskians, that also arise in the description of special function solutions of Painlevé equations. The determinants arise as partition functions in random matrix models and the recurrence coefficients satisfy a discrete Painlevé equation. The semi-classical orthogonal polynomials discussed will include a generalization of the Freud weight and an Airy weight.
Invited Talks

Zeros of Bessel Function Derivatives

Árpád Baricz
Babeș-Bolyai University, Department of Economics, Cluj-Napoca, Romania and
Óbuda University, Institute of Applied Mathematics, Budapest, Hungary
E-mail: bariczocsi@yahoo.com

We prove that for $\nu > n - 1$ all zeros of the nth derivative of the Bessel function of the first kind J_ν are real. Moreover, we show that the positive zeros of the nth and $(n+1)$th derivative of Bessel function of the first kind J_ν are interlacing when $\nu \geq n$ and n is a natural number or zero. Our methods include the Weierstrassian representation of the nth derivative, properties of the Laguerre-Pólya class of entire functions, and the Laguerre inequalities. Some similar results for the zeros of the first and and second derivative of the Struve function of the first kind H_ν are also proved. These results generalize and complement some classical results on the zeros of Bessel and Struve functions of the first kind. Some conjectures and open problems related to Hurwitz theorem on the zeros of Bessel functions are also proposed, which may be of interest for further research.

(The talk is based on the paper: Á Baricz, C.G. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv:1602.04295.)

Exceptional Orthogonal Polynomials

David Gómez-Ullate
ICMAT and Universidad Complutense de Madrid, Spain
E-mail:david.gomez-ullate@icmat.es

Exceptional orthogonal polynomials are families of complete orthogonal polynomials that arise as eigenfunctions of a Sturm-Liouville problem, which differ from the classical families of Hermite, Laguerre and Jacobi in that there is a finite number of gaps in their degree sequence. Despite the “missing” degrees, the remaining polynomials still span a complete basis of a weighted L_2 space, and the orthogonality weight is a rational modification of a classical weight. We will briefly review the main results in the theory of exceptional orthogonal polynomials (classification, position of their zeros, recurrence relations etc.), with emphasis on the similarities and differences with classical polynomials. We will also discuss their numerous applications in mathematical physics, which range from exact solutions to Schrodinger’s equation in Quantum Mechanics to rational solutions of nonlinear integrable equations of Painlevé type.
References

Gamma Functions and Complex Analysis

Henrik L. Pedersen

University of Copenhagen, Copenhagen, Denmark
E-mail: henrikp@math.ku.dk

It is well known that complex analysis can be an elegant tool for solving problems in various areas of mathematics. In this talk I shall give examples of how techniques and classes of analytic functions enter in problems in the area of special functions: Contour integration arguments give information on the behaviour of the remainders in asymptotic expansions of logarithms of gamma function. The so called Nevanlinna-Pick functions play a crucial role in the investigation of inverses of gamma function and also in the median of the gamma distribution.

Fragmentation-coagulation equations with diffusion

Jacek Banasiak

Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa
E-mail: jacek.banasiak@up.ac.za

In recent years new results concerning classical solvability of fragmentation-coagulation equations has been proved [1, 2]. In the present talk we discuss possibilities of extension of these results to fragmentation-coagulation equations with space diffusion, linking them with the linear theory developed in [3].
Properties of generalized Freud polynomials

Peter Clarkson1 and Kerstin Jordaan2

1School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK
\textit{E-mail:} P.A.Clarkson@kent.ac.uk;
2Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, RSA
\textit{E-mail:} kerstin.jordaan@up.ac.za

We consider the semi-classical generalized Freud weight function \(w_{\lambda}(x; t) = |x|^{2\lambda+1} \exp(-x^4 + tx^2), \ x \in \mathbb{R}, \) with \(\lambda > -1 \) and \(t \in \mathbb{R} \) parameters. The closed form expression for the recurrence coefficient obtained in earlier joint work with A. Kelil allow the investigation of properties of the monic polynomials that are orthogonal with respect to the generalized Freud weight \(w_{\lambda}(x; t) \). We derive a second-order linear ordinary differential equation and a differential-difference equation satisfied by these generalized Freud polynomials and then analyze the asymptotic behavior of the generalized Freud polynomials in two different contexts. Firstly, we obtain asymptotic results for the polynomials when the parameter \(t \) involved in the semiclassical perturbation of the weight tends to \(\pm \infty \). Next, we consider the asymptotics of the coefficient in the three-term recurrence relation satisfied by the generalized Freud polynomials as the degree \(n \) tends to infinity and investigate the asymptotic behavior of the polynomials themselves as the degree increases. We show that unique, positive solutions of the nonlinear difference equation satisfied by the recurrence coefficients exist for all \(t \in \mathbb{R} \) but that these solutions are very sensitive to the initial conditions. We also prove various properties of the zeros of generalized Freud polynomials.

Convolutions with harmonic strip mappings

Michael Dorff

Brigham Young University, Utah, USA
\textit{E-mail:} mdorff@math.byu.edu

We prove results concerning the convolution of univalent harmonic convex mappings provided that the convolution is locally univalent and sense-preserving. In particular, let \(f_k \) (where \(k = 1, 2 \)) be univalent harmonic functions that are shears of the analytic map \(h_k - g_k = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) \) with dilatation \(\omega_k = e^{i\theta_k} z^k \). If the convolution \(f_1 \ast f_2 \) is locally one-to-one and sense-preserving, then \(f_1 \ast f_2 \in S_\alpha^o \) is convex in the direction of the real axis.
Generalized typically real functions

Stanisława Kanas

University of Rzeszow and The State School of Higher Education in Chełm, Poland
E-mail: skanas@ur.edu.pl

Let $f(z) = z + a_2 z^2 + \cdots$ be regular in the unit disk and real valued if and only if z is real and $|z| < 1$. Then $f(z)$ is said to be typically real function. Rogosinski [4] has shown the necessary and sufficient condition for a regular function to be typically-real. The main purpose of the paper is consideration of the generalized typically-real functions defined via the generating function of the generalized Meixner-Pollaczek polynomials

$$G_\lambda(x; \theta, \psi; z) = \frac{1}{(1 - ze^{i\theta})^\lambda - iz(1 - ze^{i\psi})^\lambda + iz} = \sum_{n=0}^{\infty} \frac{P_\lambda^n(x; \theta, \psi) z^n}{|z| < 1}.$$

The generalized class is denoted by $T^{p,q}$ and defined as follows. For $-1 \leq p, q \leq 1$ let $T^{p,q}$ denote the class of generalized typically-real functions [1, 2, 3], i.e. the class of functions of a form

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} z d\mu(\theta) \frac{dz}{(1 - pze^{i\theta}) (1 - qze^{-i\theta})},$$

where $|z| < 1$, and $\mu(\theta)$ is the unique probability measure on the interval $(0, 2\pi)$.

References

Differential Subordinations and Superordinations for Analytic Functions

Teodor Bulboacă

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail: bulboaca@math.ubbcluj.ro

We show some recent results obtained by the author involving different classes of analytic differential and integral operators that preserve the subordination and the superordination. Sandwich-type results for a wide class of generalized Briot-Bouquet differential operators, and for generalized Alexander-Bernardi-Linvingston integral operators are presented, which generalize and extend many well-known classical results in this area. Remark that all these theorems and consequences are sharp, that means all the bounds (in the sense of subordination) are the best possible.
What can the three term recurrence relation tell us about orthogonal polynomials?

T. S. Chihara
Purdue University Northwest, USA
E-mail: chihara@pnw.edu, Tschihar@pnw.edu

One of the most characteristic properties of orthogonal polynomials, besides the orthogonality itself, is the fact that every system of orthogonal polynomials satisfies a three term recurrence relation of a very specific form. This relation is in fact an abstract consequence of orthogonality and the fact that the orthogonal functions are polynomials. Now, it is a somewhat lesser known fact, one that frequently elicits surprise and interest among those not previously conversant with orthogonal polynomials, that in fact the converse is true. If a sequence of polynomials satisfies a three term recurrence relation of the specific form referred to above, then in fact these polynomials are orthogonal polynomials. Assuming without loss of generality that our polynomials are monic polynomials, the three term recurrence relation in question can be written in a form that involves two real sequence as coefficients. These two sequences determine the sequence of orthogonal polynomials completely and in theory, contain all the properties of system of polynomials. Thus, for example, in his pioneering work on continued fractions, Stieltjes essentially proved that the zeros of all of the orthogonal polynomials form a bounded set if and only if both sequence are bounded. In this talk, I will survey many of the significant results along these lines, results which are attributed to many great names, such as Stieltjes, Hausdorff, Carleman, M.G.Krein.
Dunkl Processes: Relaxation Asymptotics and Jump Dynamics

Sergio Andraus
Chuo University, Tokyo, Japan
E-mail: andraus@phys.chuo-u.ac.jp

Dunkl processes are the Markov processes obtained from using the Dunkl Laplacian as a semigroup generator. Due to a difference term present in the Dunkl Laplacian, the evolution of the probability law of the process is non-local, that is, the process makes spontaneous jumps given by the action of a reflection group. We study the long-time asymptotics of the probability law and the mechanisms that drive them. In addition, we investigate the jumps of the process on their own and study their behavior in time.

(This is joint work with M.Katori (Chuo U.) and S. Miyashita (U. Tokyo.).)

Logarithmic convexity and concavity of generalized hypergeometric functions with respect to multiple parameter shifts

Dmitrii Karp
Far Eastern University, Vladivostok, Russia
E-mail: dmkrp@yandex.ru

Given a vector \(\mathbf{a} \) and a scalar \(\mu \) define \(\mathbf{a} + \mu \) as \((a_1 + \mu, a_2 + \mu, \ldots, a_p + \mu) \). In the talk we discuss the logarithmic convexity and concavity of the function

\[
\mu \to f(\mu; x) = \phi(\mu)_{pF_q} \left(\begin{array}{c} \mathbf{a}_1, \mathbf{a}_2 + \mu \\ \mathbf{b}_1, \mathbf{b}_2 + \mu \end{array} \middle| x \right),
\]

where \(_pF_q \) is the generalized hypergeometric function and

\[
\phi(\mu) \in \left\{ 1, \frac{1}{\prod_{a_i \in \mathbf{a}_2} \Gamma(a_i + \mu)}, \frac{\prod_{a_i \in \mathbf{a}_2} \Gamma(a_i + \mu)}{\prod_{b_i \in \mathbf{b}_2} \Gamma(b_i + \mu)} \right\}.
\]

Here \(\mathbf{a}_i, \mathbf{b}_i \) are real vectors of lengths \(p_i \) and \(q_i \), respectively, with \(p = p_1 + p_2, q = q_1 + q_2 \). We also consider the power series coefficients of the generalized Turánian

\[
f(\mu + \alpha; x)f(\mu + \beta; x) - f(\mu; x)f(\mu + \alpha + \beta; x)
\]

and connection to Laguerre-Pólya class of entire functions. We further mention generalizations to series with generic terms involving product ratios of gamma functions and certain conjectures for combinatorial polynomials arising in these investigations.

(The results presented in the talk have been obtained jointly with S.I. Kalmykov. Financial support of the Ministry of Science and Education of the Russian Federation (under project 1398) is acknowledged.)
Some Aspects of Harmonic Univalent Map

Yusuf Abu Muhanna

American University of Sharjah, Sharjah, UAE
E-mail: ymuhanna@aus.edu

We present many new results including area distortion inequalities, with sharp constants, of some classes of orientation preserving harmonic mappings such as the class of harmonic univalent maps onto the disk and the class of orientation preserving BMOH maps.

An Eclectic tour of Gamma Functions

G.K. Srinivasan

IIT Bombay, India
E-mail: gopal@math.iitb.ac.in

The lecture is a historical guided tour through nearly three hundred years of the development of the gamma function since its inception in 1729 in a letter from Euler to Goldbach seeking an analytic interpolation of the factorial. The function has been subjected to intense research owing to its importance in analytic number theory, mathematical physics and the distinguished position it occupies in the theory of special functions. Some results obtained in the last few years will be discussed towards the end of the lecture.

On Quasi-Optimization Problems

V. Vetrivel

Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India
E-mail: vetri@iitm.ac.in

We discuss the solutions of quasi-variational inequality problem in which the constraint map is a non-self set valued map. As application, quasi-optimization problem will be studied.

M-operators and some characterizations

K.C.Sivakumar

Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India
E-mail: kcskumar@iitm.ac.in

A real square matrix A whose off-diagonal entries are nonpositive is called an (invertible) M-matrix if A is invertible and the entries of the inverse are nonnegative. More than fifty characterizations have been obtained for a matrix to be an M-matrix. In this talk, we present some recent results that characterize when an operator is an M-operator. A brief mention will be made on the case of singular M-matrices (and their extensions).

(Joint work with A. Kalauch (TU Dresden) and S. Lavanya (PhD student, IIT Madras).)
Homogenization of a Hyperbolic equation in a Composite Media

Nandakumaran, A.K.
Department of Mathematics, Indian Institute of Science Bangalore-560012, India
E-mail: nands@math.iisc.ernet.in

In this talk, we study homogenization of a hyperbolic equation defined in a composite media consisting of two highly contrasting materials. We obtain the limit system using the method of two-scale convergence. This is a method developed in 1990’s to study homogenization problems, but it is a very general convergence which is very useful. We give a brief introduction to two-scale convergence as well.

Applications of Hamilton-Jacobi equations in Shape from Shading

G.D.Veerappa Gowda
TIFR Centre for Applicable Mathematics (TIFR-CAM), Bangalore, India
E-mail: gowda@math.tifrbng.res.in

Hamilton-Jacobi equations have wide applications in numerous fields of science such as classical mechanics and geometrical optics in physics. In this talk we emphasize upon both theoretical and numerical perspectives for this first order non-linear partial differential equations especially focussing on the application in the shape from shading i.e., to recover the shape of 3-dimensional object from 2-dimensional information.

An Operator Theoretic Treatment for an Inverse Problem in PDE

M.T.Nair
Department of Mathematics, IIT Madras
E-mail: mtnair@iitm.ac.in

Many of the inverse problems in PDE are ill-posed, in the sense that small perturbations in the data can lead to large deviations in the solution. In such cases, certain regularization methods have to be applied for obtaining stable approximate solutions for the problems. In this talk, I am interested in a particular class of inverse problems in PDE, the so called parameter identification problems. More specifically, I am interested in obtaining approximations for the unknown parameter function $q(\cdot) \in H^1(\Omega)$ appearing in the elliptic PDE

$$-\nabla.(q \nabla u) = f \quad \text{in} \quad \Omega,$$

satisfying the boundary condition

$$q \frac{\partial u}{\partial \nu} = g \quad \text{on} \quad \partial \Omega,$$

where Ω is a bounded domain in \mathbb{R}^d, $f \in L^2(\Omega)$ and $g \in H^{-\frac{1}{2}}(\partial \Omega)$, when the data u varies over $W^{1,\infty}(\Omega)$. The weak formulation of the above problem as the problem of solving an operator equation of the form

$$T_u(q) = \Phi,$$

where, T_u is a compact operator from $H^1(\Omega)$ into its dual $[H^1(\Omega)]^*$. For obtaining regularized approximations for q when the available data is z with $\|u - z\|_{W^{1,\infty}(\Omega)} \leq \delta$ for some known noise level $\delta > 0$, we apply Tikhonov regularization and its finite dimensional realizations based on projection methods. The adopted procedure is simpler than some of the existing methods in the literature.
Local polynomial convexity of certain classes of surfaces with degenerated CR-singularity

Sushil Gorai
Department of Mathematics and Statistics, IISER Kolkata
E-mail: sushil.gorai@iiserkol.ac.in

Pascal Thomas introduced a class of cubic homogeneous cubic polynomial in z and \bar{z}, namely
$$p(z, \bar{z}) = z^2\bar{z} + \epsilon z\bar{z}^2 + \epsilon^2 \frac{\epsilon}{3} \bar{z}^3, \epsilon \in \mathbb{C},$$
while giving examples of three totally-real planes in \mathbb{C}^2 whose pairwise union is locally polynomially convex at the origin but polynomial hull of the union contains interior. The above class of graphs has a degenerated CR-singularity at the origin. We argue that the local polynomial convexity of the above class of graphs at the origin is completely determined by the parameter ϵ. In the most cases we use a proper holomorphic map from \mathbb{C}^2 to \mathbb{C}^2 to pull back a graph of our considerations to union of three transverse totally-real planes. In the final part we will discuss local polynomial convexity of the surfaces viewing locally as graphs whose leading homogeneous term is of the above form.

Module Approach to Operator Theory

Jaydeb Sarkar
Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore, India
E-mail: jay@isibang.ac.in, jaydeb@gmail.com

We will begin by briefly describing some of the reasons to be interested in Hilbert module approach to operator theory. Then we will review some recent results and developments in function theory and (multivariable) operator theory. Along the way, we will discuss a list of examples and (wild) conjectures.
Short Talks

Frequency Truncation Method for Symmetrizable Hyperbolic Systems

Manil T. Mohan

Department of Mathematics and Statistics, Air Force Institute of Technology(AFIT), 2950 Hobson Way, Wright Patterson Air Force Base, OH-45433, US
E-mail: manil.thankamanimohan@afit.edu

Quasilinear symmetric and symmetrizable hyperbolic system has a wide range of applications in engineering and physics including unsteady Euler and potential equations of gas dynamics, inviscid magnetohydrodynamic (MHD) equations, shallow water equations, and Einstein field equations of general relativity. In the past, the Cauchy problem of smooth solutions for these systems has been studied by several mathematicians using semigroup approach and fixed point arguments (see [1, 2, 3] for example). In a recent paper [3], the authors established the local solvability of symmetric hyperbolic systems using two different methods, viz. local solvability of symmetrizable hyperbolic system in uniformly local Sobolev spaces introduced by Kato [1], using a frequency truncation method. The new method we present here are motivated by applications to control theory and stochastic analysis.

References

ST-02

Symmetries of generalized Laplace and Dirac operators

Hendrik De Bie\(^1\), Roy Oste\(^2\) and Joris Van der Jeugt\(^3\)

\(^1\)Department of Mathematical Analysis, Ghent University, Galglaan 2, B-9000 Gent, Belgium
E-mail: Hendrik.DeBie@UGent.be

\(^2,3\)Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium
E-mail: Roy.Oste@UGent.be; Joris.VanderJeugt@UGent.be

We consider a generalization of the classical Laplace operator, which includes the Laplace-Dunkl operator defined in terms of the differential-difference operators associated with finite reflection groups called Dunkl operators. For this Laplace-like operator, we determine a set of symmetries, which are generalized angular momentum operators which commute with it. Moreover, we present the algebraic relations for the symmetry algebra. In this context, the generalized Dirac operator is then defined as a square root of our Laplace-like operator realized in the framework of Clifford analysis. We explicitly determine a family of graded operators which commute or anti-commute with our Dirac-like operator depending on their degree. The algebra generated by these symmetry operators is shown to be a generalization of the standard angular momentum algebra and the recently defined higher rank Bannai-Ito algebra.

ST-03

Reciprocity Theorems Involving the q-Gamma Function

Mohamed El Bachraoui\(^1\) and James Griffin\(^2\)

\(^1\)Department of Mathematical Sciences, United Arab Emirates University, UAE
E-mail: melbachraoui@uaeu.ac.ae

\(^2\)Department of Mathematics and Statistics, American University of Sharjah, UAE
E-mail: jgriffin@aus.edu

In one of his notebooks, Ramanujan stated but did not prove an identity for a ratio of gamma functions involving two separate variables. Such an identity was referred to as a reciprocity theorem due to the symmetry relations between the variables. The two variable result was later proved and generalized to several variables by Berndt and Koukoulopoulos in 2006. In this work we state and prove similar reciprocity theorems for ratios of q–gamma functions involving two and more variables.
Multichannel transmission based on prolate spheroids

Marek A. Kowalski

Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, Poland
E-mail: kowalski@uksw.edu.pl

Given a positive number \(a \) let \(W(a) \) be the Paley-Wiener class of entire functions \(f : \mathbb{C} \to \mathbb{C} \) such that
\[
\int_{-\infty}^{\infty} |f(t)|^2 dt < \infty, \quad \exists K > 0 \forall z \in \mathbb{C} |f(a^2 z)| \quad \text{endowed with the inner product}
\]
\[
\langle g, h \rangle = \int_{-\infty}^{\infty} g(t) \overline{h(t)} dt, \quad g, h \in W(a).
\]

It is well-known that \(W(a) \) is a reproducing kernel Hilbert space of functions of the form
\[
f(t) = \int_{-a}^{a} Y(\omega) e^{i\omega t} d\omega,
\]
where \(Y \in L^2(-a, a) \) and \(i = \sqrt{-1} \). The reproducing kernel is explicitly given by
\[
\mathbb{C}^2 \ni (x, y) \mapsto K_{a}(x, y) = \begin{cases}
\sin(a(x-y)) \frac{\pi}{\pi(x-y)} & \text{if } x \neq y, \\
0 & \text{otherwise.}
\end{cases}
\]

In technical sciences functions in \(W(a) \) are called bandlimited signals (corresponding to the bandwidth \(B = \frac{a}{\pi} \)). We’ll focus on observing functions and their approximations on the interval \([-\tau, \tau]\) taking the \(L^2(-\tau, \tau) \)-norm to measure errors,
\[
\|f\| = \left(\int_{-\tau}^{\tau} |f(t)|^2 dt \right)^{1/2}.
\]

Prolate spheroidal wave functions are eigenfunctions of the integral operator
\[
L^2(-\tau, \tau) \ni g \mapsto \int_{-\tau}^{\tau} K_{a}(\cdot, s) f(s) ds,
\]
whose eigenvalues are arranged into a decreasing sequence \(\{\lambda_k\}_{k=0}^{\infty} \) convergent to zero. The functions in the eigenpairs \((\lambda_k, \phi_k) \) are orthogonal in \(L^2(-\tau, \tau) \) and uniquely determined by the condition
\[
\forall_k \quad \phi_k(\tau) > 0 \wedge \|\phi_k\| = 1.
\]
The pairs \((\lambda_k, \phi_k) \) continuously depend on \(a \) and \(\tau \). Actually, each \(\lambda_k \) depends only on \(c = a\tau \). Moreover, each \(\phi_k \) has a unique extension \(\mathbb{C} \ni z \mapsto \phi_k(z) \) in \(W(a) \) and the sequence \(\{\phi_k\} \) is orthogonal in \(L^2(-\infty, \infty) \) and linearly dense in \(W(a) \). More information can be found in the literature [1, 2]. The prolate spheroidal wave functions are important in mathematics and have many interesting applications in physics and technical sciences, especially in signal processing. However, they are not so easy to determine numerically. Most computational method aim to find \(\phi_j(x) \) for given values of \(j \leq m \) and \(x \in [-\tau, \tau] \). They are usually based on infinite expansions
\[
\phi_j = \sum_{k=0}^{\infty} d_{j,k} F_k,
\]
where \(F_k \) are some functions orthonormal either on \([-\tau, \tau]\) or \((-\infty, \infty)\) [3, 4, 5]. Such an approach is natural, and the numeric representations \(\{d_{j,k}\}_{k=0}^{\infty} \) may serve for any \(x \). However, the computed representations \(\{\sum_{k=0}^{n_j} d_{j,k} F_k\}_{j=1}^{m} \) are usually far from being numerically orthonormal on \([-\tau, \tau]\). In this talk we’ll show how to overcome this obstacle. We’ll also show how to use prolate spheroidals in piecewise bandlimited multichannel transmission. The basic idea of this transmission is as follows:
• independent channels 1, 2, \ldots, d every 2\tau seconds simultaneously transmit nonnegative integers \(c_1, c_2, \ldots, c_d\) within a given range (\{0, 1\} in typical situation);

• \(j\)-th channel is associated with the prolate spheroidal wave function \(\phi_j\) corresponding to the bandwidth \(a\) of the transmission medium, \(j = 1, 2, \ldots, d;\)

• the analog signal \(s = \sum_{k=1}^{d} c_k \phi_k\) is send to the receiver in the time period \(2\tau;\)

• a special hardware (receiver) computes \(c_1, c_2, \ldots, c_d\) based on the formula \(c_k = (s, \phi_k),\) where \((\cdot, \cdot)\) is the inner product in \(L_2(-\tau, \tau).\)

We’ll also show how to make the transmission smooth by forcing the signals to assume zeros at the transmission nodes. Numerical simulation will be presented to illustrate enormous resistance of the transmission to noise.

References

--

The Orthogonal Polynomial system on \([-1,1]\) corresponding to a modified Gegenbauer weight function

S. Janakiraman

Centre for Development Of Advanced Computing, Pune University Campus, Ganeshkhind, Pune-411007, India

E-mail: jraman@cdac.in

The problem of determining the orthogonal polynomial sequence on \([-1,1]\) corresponding to the modified Gegenbauer weight function of the form

\[
w(x) = \frac{4}{\ell} \frac{1}{(1 - x^2)^{\frac{\ell - 1}{2}}} \left[\frac{1}{1 + x \ell} + \frac{1}{1 - x \ell} \right]^2, \quad \ell > 1
\]

is posed here. Knowledge of the said orthogonal polynomial sequence is required in the construction of Gaussian quadrature rule for integrals of the type \(\int_{-1}^{1} f(x)w(x)dx\) which exhibit strong singularity at the end-points. Accurate evaluation of the integrals of this type are required in the context of variable resolution spectral discretization of global atmospheric flows.
Group Inverse Extensions of Certain M-matrix Properties

K. Appi Reddy1, T. Kurmaya2 and K. C. Sivakumar3

1National Institute of Technology Warangal, Warangal, India
$E-mail$: appireddy.kusuma@nitw.ac.in;
2E-mail: kurmayya@nitw.ac.in;
3Indian Institute of Technology Madras, Chennai, India
E-mail: kcskumar@iitm.ac.in

Let $R^{n \times n}$ denote the space of all real matrices with n rows and n columns. A matrix $A \in R^{n \times n}$ is called a Z-matrix if the off-diagonal entries of A are non positive. A Z-matrix can be written as $A = sI - B$, where $s \geq 0$ and $B \geq 0$. A Z-matrix A is called an M-matrix if $s \geq \rho(B)$, where $\rho(B)$ denotes the spectral radius of B. In this article, generalizations of certain M-matrix properties are proved for the group generalized inverse. The proofs use the notion of proper splittings of some type or the other. First, the following results are proved:

Theorem: Let $A \in R^{n \times n}$ with index 1. Let $F = A - AA^#$ and $G = AA^# - A^#$ be proper splittings of F and G, respectively. Then $F^#$ exists. Suppose that $AA^# \geq 0$ and $F^# \geq 0$. Then $G^# exists and $G^# \geq 0$.

Theorem: Let $A \in R^{n \times n}$ such that $A^#$ exists. Let $A = U - V$ be a pseudo regular splitting. Then the following statements are equivalent:

(i) $A^# \geq 0$.

(ii) The real part of any nonzero eigenvalue of $U^#A$ is positive.

(iii) Any nonzero real eigenvalue of $U^#A$ is positive.

Next, a recently introduced notion of a $B^#$-splitting is used in deriving certain results. Finally, applications in obtaining comparison results for the spectral radii of matrices are presented.

Synchrosqueezing Transform on a Hyperbolic Chirp

Ratikanta Behera1 and Sylvain Meignen2

$1,2$Jean Kuntzmann Laboratory - Batiment IMAG, Universite Grenoble Alpes, 700 Avenue Centrale,
Campus de Saint Martin d’Heres, 38401 France
1E-mail: ratikanta.maths@gmail.com;
2E-mail: sylvain.meignen@imag.fr

This paper addresses the behavior of wavelet and short time Fourier transform-based synchrosqueezing method on a hyperbolic chirp. Here we build on ideas from the synchrosqueezing theory of Daubechies, Lu and Wu, and we show that Cauchy wavelet transform-based synchrosqueezing is well adapted to deal with hyperbolic chirps. We have proved that the quality of the instantaneous frequency (IF) estimate on that type of signals is independent from the scale, while Fourier transform-based synchrosqueezing is independent from the frequency for the linear chirp. These results are illustrated throughout several numerical experiments.
The Grüss inequality for unital 2-positive linear maps

Sriram Balasubramanian
Department of Mathematics, IIT Madras, Chennai-600036
E-mail: bsriram@iitm.ac.in

In a recent work, Moslehian and Rajić have shown that the Grüss inequality holds for unital n-positive linear maps $\phi : A \to B(H)$, where A is a unital C^*-algebra and H is a Hilbert space, if $n \geq 3$. They also demonstrate that the inequality fails to hold, in general, if $n = 1$ and question whether the inequality holds if $n = 2$. In this talk, we provide an affirmative answer to this question.

Absolutely minimum attaining Closed Operators

S.H. Kulkarni1 and G. Ramesh2
1IIT Madras, India
E-mail: shk@iitm.ac.in;
2IIT Hyderabad, India
E-mail: rameshg@iith.ac.in

We define and discuss properties of the class of unbounded operators which attain minimum modulus. We establish a relationship between this class and the class of norm attaining bounded operators and compare the properties of both. Also we define absolutely minimum attaining operators (possibly unbounded) and characterize injective absolutely minimum attaining operators as those with compact generalized inverse. We give several consequence, one of them is that every such operator has a non trivial hyper invariant subspace.

Eigenvalues Estimates for Hadamard product of Hermitian Matrices

G. Sankara Raju Kosuru
Department of Mathematics IIT Ropar, Rupnagar 140001, Punjab, India
E-mail: raju@iitrpr.ac.in

The Schur theorem provides the global bounds for spectrum of the Hadamard product of two positive semi-definite matrices. We obtain lower and upper estimates for each eigenvalue of the Hadamard product of two Hermitian matrices.

On certain q-series & Continued Fractions

S. Ahmad Ali
Department of Mathematics Babu Banaras Das University, Lucknow-226028, India
E-mail: ali.sahmad@yahoo.com

In the present work we have obtained some continued fraction representations for the ratio of q-hypergeometric series. These continued fraction representations generalize many classical results on continued fraction including some of those given by Ramanujan. We also derive some identities analogous to those of Ramanujan.
Some Variations on Montel’s Theorem

K.S. Charak
Department of Mathematics, University of Jammu, Jammu-180006, India
E-mail: kscharak7@rediffmail.com

The theory of normal families of meromorphic functions initiated by Paul Montel in 1907 now forms an integral part of function theory. In fact, this theory is responsible for many exciting advances in the area of complex dynamics, but there has also been many far reaching internal developments in the theory during the last over hundred years. My lecture is an attempt to illustrate how the developments have taken place and still continue to develop by concentrating on one particular result—The Montel’s theorem: If each member of a family of meromorphic functions on some domain omit three distinct values of the extended complex plane, then the family is normal. In fact, I will try to explore some of the directions in which this result has been extended and generalized over a little less than hundred years. Also, I shall present some of my own contributions in this direction.

Composition Operators between Musielak-Orlicz Spaces

Romesh Kumar
Department of Mathematics, University of Jammu, Jammu-180006, India
E-mail: romehmath@gmail.com

Let \(\Omega_1 \) and \(\Omega_2 \) be two non-empty sets and let \(V(\Omega_1, \mathbb{C}) \) and \(V(\Omega_2, \mathbb{C}) \) be two topological vector spaces of complex valued functions on \(\Omega_1 \) and \(\Omega_2 \), respectively, under pointwise vector space operations, where \(\mathbb{C} \) denotes the field of all complex numbers. Suppose \(\tau : \Omega_2 \mapsto \Omega_1 \) is a mapping such that \(f \circ \tau \in V(\Omega_2, \mathbb{C}) \), whenever \(f \in V(\Omega_1, \mathbb{C}) \). Define a composition transformation \(C_\tau : V(\Omega_1, \mathbb{C}) \mapsto V(\Omega_2, \mathbb{C}) \) as

\[
C_\tau f = f \circ \tau, \quad f \in V(\Omega_1, \mathbb{C}).
\]

If \(C_\tau \) is continuous, then \(C_\tau \) is called a composition operator induced by \(\tau \).

In this talk, we will discuss the boundedness of these operators between Musielak-Orlicz spaces.

(This talk is based on my joint work with Heera Saini, Yunan Cui, Henryk Hudzik and Lech Maligranda.)

Recent Developments in Planar Harmonic Mappings

S.B. Joshi
Walchand College of Engineering, Sangli, Maharastra, India-416415
E-mail: santosh.joshi@walchandsangli.ac.in, joshisb@hotmail.com

In the present lecture we aim at providing basic information about planar harmonic mappings with some historical background and different directions in which presently research work is carried out by researchers in this area. Further, we present connections of such mappings with hypergeometric functions.
Multi-penalty regularization in learning theory

Sivananthan Sampath
Department of Mathematics, IIT Delhi, India
E-mail: siva@maths.iitd.ac.in

The aim of learning theory is to seek for an algorithm that, given a set of examples \(\{(x_i, y_i)\}_{i=1}^n \), returns a function \(f \) such that \(f(x) \) is a good estimate of the output \(y \) when a new input \(x \) is given. It is clear that the problem is ill-posed. In this talk, we discuss how to regularize this problem using multi-penalty regularization. We will then discuss the issue of convergence, error estimates and the appropriate choice to regularization parameter for the proposed method.

(This is a joint work with Abhishake)

Hybrid Sheffer-Appell Polynomials

Subuhi Khan
Department of Mathematics Aligarh Muslim University Aligarh, India
E-mail: subuhi2006@gmail.com

One of the important classes of polynomial sequences is the class of Sheffer sequences. The class of Appell polynomial sequences, which is a subclass of Sheffer polynomial sequences is equally important. The Appell and Sheffer polynomial sequences arise in numerous problems of applied mathematics, theoretical physics, approximation theory and several other mathematical branches. In this work, the Sheffer and Appell polynomials are combined to introduce the hybrid Sheffer-Appell polynomials by using operational methods. The determinant form and other properties of the Sheffer-Appell polynomials are established. As particular cases of these polynomials, the Sheffer-Bernoulli and Sheffer-Euler polynomials are introduced and corresponding results for these polynomials are also obtained. The operational correspondence between the Appell and Sheffer-Appell polynomials is used to derive the results for the Sheffer-Appell polynomials. Certain results for the Hermite-Appell and Laguerre-Appell polynomials are also obtained. Examples of some members belonging to the hybrid Sheffer-Appell polynomials are considered and the graphs of certain members are drawn for suitable values of the indices.

Inverse problems of Calderon type

Venky Krishnan
Centre for Applicable Mathematics, TIFR Bangalore, India
E-mail: vkrishnan@math.tifrbng.res.in

We consider certain Calderon type inverse problems and show the unique recovery of lower coefficients of the PDE from partial boundary Dirichlet to Neumann data.
Neighbourhoods of univalent functions

Bappaditya Bhowmik
Indian Institute of Technology Kharagpur
E-mail: bappaditya@maths.iitkgp.ernet.in

We first discuss some old and new results on neighbourhoods of univalent functions which are the motivation for the present research in the manuscript [1]. We introduce (rather we define) formally the concept of a central function. We prove that there exist central functions for the classes $Co(p)$ of concave univalent functions with pole at the point $z = p \in (0, 1)$. Further, we construct a generalized neighborhood of this central function such that the whole class $Co(p)$ is contained in such neighborhood. We also consider similar questions for the class of functions that are analytic and univalent in the unit disc and for some of its important subclasses.

References

A Positive Spectral Gradient-Like Method for Large-Scale Nonlinear Monotone Equations

Auwal Bala Abubakar
Department of Mathematical Sciences, Faculty of Sciences, Bayero University, Kano, Nigeria
E-mail: ababubakar.mth@buk.edu.ng

In this work, we proposed a combination of a positive spectral gradient-like method and projection method for solving nonlinear monotone equations. The spectral gradient-like coefficient is obtained using a convex combination of two different positive spectral coefficients. Under the monotonicity and Lipschitz continuity assumptions the method is shown to be globally convergent. We show the efficiency of the method numerically by comparing it with the existing methods.

A null controllability result for fully nonlinear evolution equations

Omar BENNICHE
Djilali BOUNAAMA University
E-mail: o.benniche@univ-dbkm.dz

We prove a null controllability result for the control system

$$y'(t) = Ay(t) + f(t, y(t)) + u(t), y(0) = x,$$

where $A : D(A) \subseteq X \rightarrow X$ is a possibly multi-valued operator, X is a separable Banach space, $f : [0, +\infty) \times X \rightarrow X$ is a given function and $u(\cdot)$ is a control taking values in the unit ball of X. More precisely, we find a control $u(\cdot)$ that steers x into the origin 0 in a finite time $T > 0$, by the corresponding solution of the evolution equation under consideration.
Alternating Iterative Method for Rectangular Matrices

Debasisha Mishra
Department of mathematics, National Institute of Technology Raipur, Raipur-492010
E-mail: dmishra@nitrr.ac.in

Theory of matrix splittings is a useful tool for solving large sparse rectangular/square singular/square nonsingular systems of linear equations, iteratively. When two matrix splittings are given, it is of interest to compare the spectral radii of the corresponding iteration matrices. This helps to arrive at the conclusion that which splitting should one choose so that one can reach at the desired solution of accuracy or at the exact solution in a faster way. In this direction, many comparison results are available in the literature even for rectangular case. However, in case of existence of many splittings of a given matrix, comparison of spectral radii is time consuming. Such a situation can be overcome by introducing another iteration scheme which converges to the same solution of interest in a much faster way. In this context, theory of alternating iterations for real rectangular matrices is proposed here by generalizing the work of Benzi and Szyld [3] and using the notion of proper splittings, which came into light in 1974 due to the pioneering works of Berman and Plemmons [4]. The main advantage of proper splittings is convergence of the iterative method to least square solution of minimum norm of a rectangular system of linear equations for some sub classes of these splittings (see [4], [6], [7], [8] and [9]) and reduces to usual splitting in case of nonsingular matrices. The salient contributions of the present work are mentioned hereunder.

(a) We first provide two comparison results which will help us in detecting a better splitting between two proper splittings.

(b) We then introduce the notion of alternating iterative scheme for rectangular matrices by using the Moore-Penrose inverse [2] and study its convergence theory.

(c) Finally, when two alternating iteration schemes for solving a same system of linear equations are available, it is of interest to know which one will converge faster, and is settled next by inclusion of a comparison result.

We hope that this work will provide useful insights into extending this approach and thus help in solving rectangular linear systems in a faster way. Applications of this theory to compute pagerank of a google matrix can be found in the recent article [5] while the numerical behavior of such methods is discussed in [1], both in nonsingular matrix setting.

References

In this paper, the Abelian theorems involving Bessel wavelet transform is investigated and afterwards certain distributional results discussed by exploiting the theory of Hankel transform.

In this article, we discuss the semilocal convergence of well established iterative method for solving nonlinear equations in Banach spaces under relaxed condition. The semilocal convergence of this scheme is established by using recurrence relations. We derive a system of recurrence relations for the method and then prove the existence and uniqueness result that shows the R--order of the method. Finally, numerical example is presented to validate the theoretical discussions.

References

On some properties of extended Wright type hypergeometric function

Ranjan Kumar Jana
Department of Applied Mathematics & Humanities, S.V. National Institute of Technology, Surat-395007, India
E-mail: rkjana2003@yahoo.com

In recent past, several interesting families of hypergeometric functions were investigated systematically. In the present talk, we introduce a new family of hypergeometric function and report several properties of this extended Wright type hypergeometric function.

\[\gamma \text{-Hyperconnectedness in Fuzzy Topological Spaces} \]

B. Bhattacharya
Department of Mathematics, NIT Agartala, Tripura(W), India
E-mail: babybhatt75@gmail.com

This paper introduces the notion of \(\gamma \)-hyperconnectedness in fuzzy topological space to show that it is completely independent to fuzzy hyperconnectedness in the sense of Miguel Caldas. The paper also presents some equivalence theorems linking the concept with regular open sets in this context. Applying this new effective idea we move forward one more step towards the difference between topological spaces and fuzzy topological spaces. We contemplate that this study may be applicable in parallel topology related to parallel circuit of electronic network and consequently in graph theory also.

Extension of Laguerre Transform and its Applications

Ajay Shukla
Department of Applied Mathematics and Humanities, S. V. National Institute of Technology, Surat-395007, India
E-mail: ajayshukla2@rediffmail.com ; aks@ashd.svnit.ac.in

Debnath[1] introduced the Laguerre transform and derived some properties. He also discussed the applications in study of heat conduction, oscillations of a very long and heavy chain with variable tension. Glaeske generalized Laguerre transform of one variable as Laguerre- Pinney transformation, Wiener-Laguerre transformation and derived its properties. In this talk, we discuss the extension of work of Debnath on Laguerre transform, which is defined as,

\[\mathcal{L}\{ f(x,y) \} = F_n(\alpha, \beta) = \int_0^\infty \int_0^\infty e^{-(x+y)}x^\alpha y^\beta K_n^{(\alpha, \beta)}(x,y)f(x,y)dxdy, \]

where, \(f(x,y) \) be a Riemann integrable function defined on the set \(S = \mathbb{R}^+ \times \mathbb{R}^+, \alpha > -1, \beta > -1, n \) is non negative integer and \(K_n^{(\alpha, \beta)}(x,y) = L_n^\alpha(x)L_n^\beta(y). \)

We also give some basic properties and its applications in special type of partial differential equations.
ST-27

On \(q\)-series, Split \((n + t)\)-color partitions and 2–color \(F\)-partitions

M. Rana

School of Mathematics Thapar University, Patiala, India

E-mail: mrana@thapar.edu

Andrews [1] defined the two classes of generalized \(F\)-partitions: \(F\)-partitions and \(k\)-color \(F\)-partitions. For many \(q\)-series and Rogers–Ramanujan type identities, the bijections are established between \(F\)-partitions and \((n + t)\)-color partitions. Recently \((n + t)\)-color partitions have been extended to split \((n + t)\)-color partitions by Agarwal and Sood [2]. The purpose of this paper is to study the \(k\)-color \(F\)-partitions as a combinatorial tool. The paper includes combinatorial proofs and bijections between split \((n + t)\)-color partitions and 2–color \(F\)-partitions for some generalized \(q\)-series. Our results further give rise to infinite three way combinatorial identities in conjunction with some Rogers–Ramanujan type identities for some particular cases.

References

ST-28

Bounds for Radii of Starlikeness and Convexity of some Special Functions

Ibrahim Aktaş\(^1\), Árpád Baricz\(^2\) and Nihat Yağmur\(^3\)

\(^1\)Department of Mathematical Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane 29100, Turkey

E-mail: aktasibrahim38@gmail.com

\(^2\)Department of Economics, Babeș-Bolyai University, Cluj-Napoca 400591, Romania

Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary

E-mail: bariczocsi@yahoo.com

\(^3\)Department of Mathematics, Erzincan University, Erzincan 24000, Turkey

E-mail: nhtyagmur@gmail.com

In this work we consider some normalized Bessel, Struve and Lommel functions of the first kind. By using Euler-Rayleigh inequalities we obtain tight lower and upper bounds for the radius of univalence of these functions. Also by considering two different normalizations of Bessel and Struve functions we give some inequalities for the radii of convexity of the same functions. On the other hand we show that the radii of univalence of some normalized Struve and Lommel functions are exactly the radii of starlikeness of the same functions. In addition to that by using some ideas from Ismail and Muldoon’s paper we present some new lower and upper bounds for the zeros of derivatives of some normalized Struve and Lommel functions. The Laguerre-Pólya class of entire functions plays an important role in our study.
Geometric properties of regular Coulomb wave functions

Árpád Baricz, Murat Çağlar, Erhan Deniz and Evrim Toklu

1Department of Economics, Babeș-Bolyai University, Cluj-Napoca 400591, Romania
Institute of Applied Mathematics, Obuda University, 1034 Budapest, Hungary
1E-mail: bariczocsi@yahoo.com
2,3Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars 36100, Turkey
2E-mail: mcaglar25@gmail.com; 3E-mail: edeniz36@gmail.com
4Department of Mathematics, Faculty of Science, Ağrı İbrahim Çeçen University, 04100 Ağrı, Turkey
4E-mail: evrimtoklu@gmail.com

In this talk our aim is to present the radii of univalence, starlikeness and convexity of the normalized regular Coulomb wave functions for two different kinds of normalization. The key tools in the proof of our main results are the Mittag-Leffler expansion for regular Coulomb wave functions, and properties of zeros of the regular Coulomb wave functions and their derivatives. Moreover, by using the technique of differential subordinations we present some conditions on the parameters of the regular Coulomb wave function in order to have starlike normalized forms of the Coulomb wave function. An open problem for the zeros of the regular Coulomb wave functions is also stated which may be interest for further research.

(The talk is based on a joint work of Á. Baricz, M. Çağlar, E. Deniz, E. Toklu.)

Radii of starlikeness and convexity of a cross-product of Bessel functions

Árpád Baricz and Nihat Yağmur

1Department of Economics, Babeș-Bolyai University, Cluj-Napoca 400591, Romania
Institute of Applied Mathematics, Obuda University, 1034 Budapest, Hungary
E-mail: bariczocsi@yahoo.com;
2Department of Mathematics, Erzincan University, Erzincan 24000, Turkey
E-mail: nhtyagmur@gmail.com

In this paper some geometric properties of the normalized form of the cross-product and product of Bessel and modified Bessel functions of the first kind are studied. For the cross-product and the product of three different normalization are investigated and for each of the six functions the radii of starlikeness and convexity are precisely determined by using their Hadamard factorization. Necessary and sufficient conditions are also given for the parameters such that the six normalized functions are starlike in the open unit disk, however the convex case is open for further research. The characterization of entire functions from the Laguerre-Pólya class via hyperbolic polynomials play an important role in this paper. Moreover, the interlacing properties of the zeros of the cross-product and product of Bessel functions and their derivatives are also useful in the proof of the main results.

References

In this paper, we proposed a new conjugate gradient algorithm for solving systems of large-scale non-linear equations. The algorithm is based on equating the classical conjugate gradient direction with the direction corresponding to the spectral gradient method. Using some derivative-free line search, we prove that under suitable conditions the proposed algorithm is globally convergent. Numerical comparisons show that the method is competitive with some recent developed methods.
On logarithmic coefficients of close-to-convex functions

Vasudevarao Allu
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721 302, India
E-mail: alluvasu@maths.iitkgp.ernet.in

Let S denote the class of functions analytic and univalent (i.e. one-to-one) in the unit disk $D = \{ z \in \mathbb{C} : |z| < 1 \}$ normalized by $f(0) = 0 = f'(0) - 1$. The logarithmic coefficients γ_n of $f \in S$ are defined by $\log f(z) = \frac{2}{z} \sum_{n=1}^{\infty} \gamma_n z^n$. In this talk, we discuss the sharp upper bounds for $|\gamma_3|$ when f belongs to the family of close-to-convex functions.
Contributory Talks

Duality Techniques on a class of functions defined by convolution with Gaussian hypergeometric functions

Navneet Lal Sharma
ISI Chennai Centre, India
E-mail: sharma.navneet23@gmail.com

We use the duality principle and find conditions to characterize the starlikeness and convexity of the integral transform

\[V_\lambda(f)(z) = \int_0^1 \lambda(t) \frac{f(tz)}{t} \, dt \]

of functions \(f \) belonging to a class of functions defined by convolution with Gaussian hypergeometric functions.

(This talk is based on the following article:
S. K. Sahoo and N. L. Sharma, Duality techniques on a class of functions defined by convolution with Gaussian hypergeometric functions, J. Anal. 22 (2014), 145–155.)

Removable sets for Sobolev, Orlicz-Sobolev and weighted Orlicz-Sobolev spaces

Nijjwal Karak
Indian Institute of Technology Indore, Indore, India
E-mail: nijjwal@gmail.com

In this talk, I will discuss about removable sets for Sobolev spaces, Orlicz-Sobolev spaces and some weighted version of Orlicz-Sobolev spaces. I will present the theories of removability of sets lying in a hyperplane and we will see that the removability of these sets is essentially determined by their thickness measured in terms of a concept of porosity.

References

Local Convergence of Super Halley’s method under weaker condition on Fréchet derivative in Banach Spaces

Abhimanyu Kumar¹ and D.K. Gupta²
¹²Department of Mathematics, IIT Kharagpur
¹E-mail: akr.math01991@gmail.com; ²E-mail: dkg@maths.iitkgp.ernet.in

Super Halley’s method is one of the most important iterative method for solving nonlinear equations in Banach spaces. Its local convergence analysis is established using either majorizing sequence or recurrence relations under various continuity conditions such as Lipschitz or Hölder using first/second order Fréchet derivatives. In this paper, an attempt is made to establish its local convergence analysis under weaker continuity conditions on first order Fréchet derivative. This work generalizes the earlier work in this direction and it is observed that it is applicable to cases whether they either fail to converge or give smaller balls of convergence.

Truncated spectral regularization method for source identification in an abstract Cauchy problem

Ajoy Jana¹ and M.T. Nair²
¹²Department of Mathematics, IIT Madras, India
¹E-mail: janaajoy340@gmail.com; ²E-mail: mtnair@iitm.ac.in

Abstract inverse source problem

\[u_t + Au = f(t), \quad 0 < t < \tau \]
\[u(0) = \phi_0, \quad u(\tau) = \phi_\tau \]

is considered, when \(A \) is a densely defined self-adjoint coercive unbounded operator on a Hilbert space \(H \). Following the procedure in Hasanov and Slodicka [1](2013), it can be seen that for \(\phi_0, \phi_\tau \in D(A) \), the mild solution of the considered problem is of the form

\[f(t) = (e^{-\tau A} - I)^{-1}A\left(\phi_\tau - e^{-\tau A}\phi_0 - \int_0^\tau e^{-(\tau-s)A}g(s)ds\right) + g(t), \]

for any \(g \in L^1([0, \tau]; H) \) with \(\int_0^\tau S(\tau-s)g(s) \in D(A) \). Since \(A \) is an unbounded operator, small perturbations in \(\phi_\tau \) can lead to a large deviations in the mild solution \(f \). To obtain a stable approximation of \(f \), we consider the spectral regularization by truncation, namely as

\[f_\beta(t, \phi) = \int_\gamma^\beta \lambda e^{-\lambda \tau} - 1 dE_\lambda \phi - (e^{-\tau A} - I)^{-1}A\left(e^{-\tau A}\phi_0 - \int_0^\tau e^{-(s)A}g(s)ds \right) + g(t), \]

where \(\{E_\lambda : \lambda \geq \gamma\} \) is the resolution of identity of the operator \(A \) and \(\beta > \gamma \) with \(\gamma \) as a coefficient of coercivity of \(A \). We carry out error analysis under a general condition on \(\phi_\tau \), namely

\[\int_\gamma^\infty |\lambda h(\lambda)|^2 dE_\lambda \phi_\tau|^2 < \infty, \]

where \(h : [\gamma, \infty) \to (0, \infty) \) is a monotonically increasing piecewise continuous function. Under this assumption, we prove

\[||f(t) - f_\beta(t)|| \leq O\left(\frac{1}{h(\beta)}\right), \quad 0 \leq t \leq \tau. \]

When the data \(\phi_\tau \) is noisy, that is, if we have \(\phi_\tau^\epsilon \) in place of \(\phi_\tau \) with \(||\phi_\tau - \phi_\tau^\epsilon|| \leq \epsilon \) for some \(\epsilon > 0 \), strategy of choosing the regularization parameter \(\beta_\epsilon := \beta(\epsilon) \) has been suggested which yields an error estimate as a function of \(\epsilon \).
References

Weighted Fractional composition operators on certain function spaces

D. Borgohain\(^1\) and S. Naik\(^2\)
\(^{1,2}\)Guwahati University, Assam, India
\(^1\)E-mail: deepa2b@gmail.com; \(^2\)E-mail: spn20@yahoo.com

In this paper we give some characterizations for the boundedness of the weighted fractional composition operator \(D^β_ϕ,u\) from \(α−\)bloch spaces into weighted type spaces by deriving the bounds of its norm. Also estimates for the essential norm are obtained which gives necessary and sufficient conditions for the compactness of the operator \(D^β_ϕ,u\).

The Bounded Approximation Property for the Predual of the Weighted Space of Holomorphic Mappings on Banach Spaces

Deepika\(^1\) and Manjul Gupta\(^2\)
\(^{1,2}\)Department of Mathematics and Statistics, IIT Kanpur, U.P.-208016, India
\(^1\)E-mail: dbaweja@iitk.ac.in; \(^2\)E-mail: manjul@iitk.ac.in

Let \(E\) be the complex Banach space and \(U\) be an open subset of \(E\). The class of all complex valued holomorphic functions defined on \(U\) is denoted by \(\mathcal{H}(U)\). Corresponding to a weight \(v\) (a strictly positive continuous function) defined on \(U\), the weighted space of holomorphic functions is defined as
\[
\mathcal{H}_v(U) = \{f \in \mathcal{H}(U) : ||f||_v = \sup_{x \in U} v(x)|f(x)| < \infty\}
\]
The space \((\mathcal{H}_v(U), ||\cdot||_v)\) is a Banach space and \(B_v\) denotes its closed unit ball.

A weight \(v\) defined on an open balanced subset \(U\) of \(E\) is said to be radial if \(v(tx) = v(x)\) for all \(x \in U\) and \(t \in \mathbb{C}\) with \(|t| = 1\); and on \(E\), it is said to be rapidly decreasing if \(\sup_{x \in E} v(x)||x||^m < \infty\) for each \(m \in \mathbb{N}_0\). Corresponding to a decreasing family \(V = \{v_n\}_{n \in \mathbb{N}}\) of radial rapidly decreasing weights on \(E\), we consider the space \(\mathcal{VH}(E)\) defined as
\[
\mathcal{VH}(E) = \{f \in \mathcal{H}(E) : \text{there exists some } n \in \mathbb{N} \text{ such that } ||f||_{v_n} = \sup_{x \in E} v_n(x)|f(x)| < \infty\}
\]
which is endowed with the inductive limit topology \(τ_I\). The predual of \(\mathcal{VH}(E)\) is given by
\[
\mathcal{VG}(E) = \{φ \in \mathcal{VH}(E)^* : φ(B) \text{ is } τ_0− \text{ continuous for each } τ_I− \text{ bounded set } B\}
\]
where \(τ_0\) denotes the topology of uniform convergence on compact subsets of \(E\). We show that there is an \(S−\) absolute decomposition for \(\mathcal{VG}(E)\) with respect to the topology of uniform convergence on \(τ_I−\) bounded sets. Using this result, we characterize the bounded approximation property for the space \(E\) in terms of the bounded approximation property for \(\mathcal{VG}(E)\).
CT-07 Quasiconformal Extension of Meromorphic Functions with nonzero Pole

Bappaditya Bhowmik1, G. Satpati2 and T. Sugawa3

1,2Department of Mathematics, IIT Kharagpur, Kharagpur-721302, India
1E-mail:bappaditya@maths.iitkgp.ernet.in; 2E-mail: gsatpati@iitkgp.ac.in;
3Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai-980-8579, Japan
E-mail: sugawa@math.is.tohoku.ac.jp

In this talk, we consider meromorphic univalent functions $f(z)$ in the unit disc with a simple pole at $z = p \in (0, 1)$ which have a k--quasiconformal extension to the extended complex plane $\mathbb{C} \cup \{\infty\}$ where $0 \leq k < 1$. We denote the class of such functions by $\sum_k(p)$. Here, a mapping $f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ is called k-quasiconformal if f is a homeomorphism and has locally L^2--derivatives on $\mathbb{C} \setminus \{f^{-1}(\infty)\}$ (in the sense of distribution) satisfying $|\bar{\partial}f| \leq k|\partial f|$ a.e., where $\bar{\partial}f = \partial f/\partial \bar{z}$ and $\partial f = \partial f/\partial z$. We first prove an area theorem for functions in this class. Next, we derive a sufficient condition for meromorphic functions in the unit disc with a simple pole at $z = p \in (0, 1)$ belong to the class $\sum_k(p)$. Finally, we give a convolution property for functions in the class $\sum_k(p)$.

(This talk is based on the following article:

CT-08 The Distributional continuous Fractional generalized Hankel-Clifford Transformation

V. R. Lakshmi Gorty

MPSTME, SVKM’s NMIMS University, Vile Parle(W), Mumbai-400056(M.S.) India
E-mail: vr.lakshmigorty@nmims.edu

The main objective of this paper is to study the fractional generalized Hankel-Clifford transformation and some of their basic properties. Applications of the fractional generalized Hankel-Clifford transformation in solving generalized nth order linear non-homogeneous ordinary differential equations are given. The continuous fractional generalized Hankel-Clifford transformation, its inverse formula are also studied.

CT-09 Open Ball centered at an invertible element of a Banach Algebra

Geethika Sebastian1 and D Sukumar2

1,2Department of Mathematics, IIT Hyderabad, Hyderabad-502285, India
1E-mail: ma13p1002@iith.ac.in; 2E-mail: suku@iith.ac.in

The open ball centered at an invertible element a of a Banach algebra A, with radius $\frac{1}{\|a^{-1}\|}$, is contained inside the open set of all invertible elements, $G(A)$ in A. An invertible element a of a Banach algebra A is said to satisfy BOBP (Biggest Open Ball Property) if the boundary of the ball $B\left(a, \frac{1}{\|a^{-1}\|}\right)$ intersects the set of non invertible elements in A. We say a Banach algebra A satisfies BOBP if every a in $G(A)$ satisfies BOBP. We characterize all commutative Banach algebras that satisfy BOBP. We prove that all C^* algebras satisfy BOBP and give sufficient conditions for some more Banach algebras to satisfy the same.
Semilocal convergence of two step Kurchatov method for nondifferentiable operator

Himanshu Kumar1 and P.K. Parida2

1,2Centre for Applied Mathematics, Central University of Jharkhand, Ranchi-835205, India
1E-mail: himanshu.kumar.01@cuj.ac.in; 2E-mail: pkparida@cuj.ac.in

In this article, we present a new semilocal convergence analysis for the two step Kurchatov method. The main advantage of this method is that it does not need to evaluate any Fréchet derivative. The method includes extra parameters in the divided difference in order to ensure a good approximation to the first derivative in each iteration. The convergence analysis is established using recurrence relations which involved the first order divided differences satisfies the Lipschitz condition. We prove using recurrence relations a semilocal convergence in Banach spaces and also do a detailed study of the domain of parameters of the method.

Existence Results for Sobolev type fractional integro-differential equation with fractional nonlocal conditions

Renu Chaudhary

Department of Mathematics, Indian Institute of Technology Roorkee
Roorkee-247667, India
E-mail: rrenu946@gmail.com

In this paper, we apply monotone iterative technique coupled with the method of lower and upper solutions to obtain the existence and uniqueness of the mild solution for the following Sobolev type fractional integro-differential equation with fractional nonlocal conditions in an ordered Banach space X:

\begin{align*}
^cD^q[Bx(t)] &= Ax(t) + f\left(t, x(t), \int_0^t k(t, s, x(s))\,ds\right), \quad t \in I = (0, T] \\
^L D^{1-q}[Tx(0)] &= x_0 + g(x(t)),
\end{align*}

where $^cD^q$ denotes the Caputo fractional derivative and $^L D^q$ denotes the Riemann-Liouville fractional derivative of order $q \in (0, 1]$. $A : D(A) \subset X \to X$, $B : D(B) \subset X \to X$ and $T : D(T) \subset X \to X$ are linear operators. $\Omega = \{(t, s) : 0 < s \leq t < \infty\}$. $f : I \times X \times X \to X$, $k : \Omega \times X \to X$ and $g : C(I, X) \to X$ are given functions. The results are obtained using the theory of semigroup and Kuratowski measure of noncompactness. At last, an example is given to show the availability of main results.
Approximate Controllability of Semilinear Fractional Stochastic System of Order $\rho \in (1,2]$ with Nonlocal Conditions

Urvashi Arora
Department of Mathematics, Indian Institute of Technology Roorkee, India
E-mail: urvashiaroraiitr@gmail.com

This paper is concerned with the approximate controllability of semilinear fractional stochastic system of order $\rho \in (1,2]$ with nonlocal conditions. By using Sadovskii’s Fixed Point Theorem with fractional calculus and stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of fractional stochastic system with nonlocal conditions under the assumption that the corresponding linear system is approximate controllable. Finally, an application to a fractional stochastic system with nonlocal initial conditions is provided to illustrate the feasibility of the obtained results.

Kantorovich type modification of $q-$ Bernstein-Schurer operators

A.R. Gairola1 and K.K. Singh2
1Department of Mathematics, Doon University, Dehradun-248001(Uttarakhand), India
E-mail: ashagairola@gmail.com
2Government Technical Institute Rampur-244901 (Uttar Pradesh) India
E-mail: kksiitr.singh@gmail.com

The present paper deals with the Kantorovich type modification of $q-$Bernstein-Schurer operators to find an approximation process for integrable functions. The convergence of these operators is tested by utilizing the Korovkin’s method of test functions. The approximation properties such as Voronovskaja type theorem and rate of convergence in terms of classical modulus of smoothness of second order are also studied. Finally we establish a approximation theorem in the weighted space of continuous functions.

Data visualization by Rational fractal function based on function values

K.M.Reddy1, A.K.B.Chand2 and P.Viswanathan3
1,2Department of Mathematics, IIT Madras, Chennai-600036, India
1E-mail: mahipalnitw@gmail.com; 2E-mail: chand@iitm.ac.in;
3Department of Mathematics, Indian Institute of Technology Delhi, New Delhi-110016, India
E-mail: viswa@maths.iitd.ac.in

This article proposes a rational fractal interpolation function (FIF) with three shape parameters based on function values only. The constructed FIF involves rational functions with numerators as cubic polynomials chosen according to the interpolation conditions and denominators as preassigned quadratic polynomials with three shape parameters. An upper bound of the uniform error of the rational cubic FIF with an original function in C^1 is derived and the convergence is deduced. The parameters involved in the fractal functions are identified so as to solve certain constrained interpolation problems. We illustrate our interpolation scheme with some numerical examples.
{\(T, S\)} Splittings of Rectangular Matrices Revisited

K. Appi Reddy\(^1\) and T. Kurmayya\(^2\)

\(^1\)National Institute of Technology Warangal, India
\(^2\)E-mail: appireddy.kusuma@nitw.ac.in; \(^2\)E-mail: kurmayya@nit.ac.in

Let \(\mathbb{R}^n\) denote the \(n\) dimensional real Euclidean space and \(\mathbb{R}^{m \times n}\) denote the set of all real matrices of order \(m \times n\). Let \(A \in \mathbb{R}^{m \times n}\) be of rank \(r\), let \(T\) be a subspace of \(\mathbb{R}^n\) of dimension \(s \leq r\) and let \(S\) be a subspace of \(\mathbb{R}^m\) of dimension \(m - s\). Then the splitting \(A = U - V\) is called the \(\{T, S\}\) splitting of \(A\) if \(UA \oplus S = \mathbb{R}^m\). In this article, \(\{T, S\}\) splittings of rectangular matrices are considered and derived certain convergence results. These results involve outer inverses (or \(\{2\}\)-inverses) with prescribed range and null space, of matrices emerge from the \(\{T, S\}\) splittings. First, we prove the following convergence results:

Theorem: Let \(A \in \mathbb{R}^{m \times n}\) be of rank \(r\), let \(T\) be a subspace of \(\mathbb{R}^n\) of dimension \(s \leq r\) and let \(S\) be a subspace of \(\mathbb{R}^m\) of dimension \(m - s\), such that \(AT \oplus S = \mathbb{R}^m\). Assume that \(A = U - V\) is a \(\{T, S\}\) splitting of \(A\) and \(\text{dim}(T) \leq \text{rank}(U)\). Suppose that \(A_{T,S}^{(2)}U \geq 0\) and \(U_{T,S}^{(2)}V \geq 0\). Then \(\rho(U_{T,S}^{(2)}V) = \frac{\rho(A_{T,S}^{(2)}U)}{\rho(A_{T,S}^{(2)}U)} < 1\).

Theorem: Let \(A \in \mathbb{R}^{m \times n}\) be of rank \(r\), let \(T\) be a subspace of \(\mathbb{R}^n\) of dimension \(s \leq r\) and let \(S\) be a subspace of \(\mathbb{R}^m\) of dimension \(m - s\), such that \(AT \oplus S = \mathbb{R}^m\). Assume that \(A = U - V\) is a \(\{T, S\}\) splitting of \(A\) and \(\text{dim}(T) \leq \text{rank}(U)\). Suppose that \(U_{T,S}^{(2)}V \geq 0\). Then \(A_{T,S}^{(2)}V \geq 0\) if and only if \(\rho(U_{T,S}^{(2)}V) = \frac{\rho(A_{T,S}^{(2)}V)}{\rho(A_{T,S}^{(2)}V)} < 1\).

Finally, we prove comparison results for \(\{T, S\}\) splittings.

Third Hankel Determinant for Generalized Sakaguchi functions

C. Ramachandran\(^1\) and K. Dhanalakshmi\(^2\)

\(^1\)Department of Mathematics, University College of Engineering, Villupuram, Anna University Chennai, Villupuram-605103, Tamilnadu, India
\(^2\)E-mail: crjps2004@yahoo.com; \(^2\)E-mail: ksdhanalakshmi@gmail.com

In this present investigation, we obtain the upper bound to the third Hankel determinant for the generalized Sakaguchi functions in the open unit disk using subordination.

Toeplitz Determinant for Some Subclasses of Analytic Functions

C. Ramachandran\(^1\) and D. Kavita\(^2\)

\(^1\)University College of Engineering, Villupuram, Anna University, Villupuram-605103, Tamilnadu, India
\(^2\)IFET College of Engineering, Gangarampalayam, Villupuram-605108, Tamilnadu, India

E-mail: crjps@yahoo.com; E-mail: soundarkavita@gmail.com

Let \(f\) be analytic in \(D = \{z : |z| < 1\}\) with \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n\). In this present investigation, we are finding the sharp bounds for the symmetric Toeplitz determinant for \(T_2(2), T_2(3), T_3(2)\) and \(T_3(1)\) for the functions belonging to a subclass \(\mathcal{M}(\alpha)\).
Inverse Problems for Wave Equation in 3-D with under-determined Data

Mannmohan Vashisth
TIFR-CAM, Bangalore, India
E-mail: manmohan@tifrbng.res.in

In [2], the author considered inverse problems for wave equation in 3-dimensions with source and receiver at the same point. There he proved unique determination of the zeroth order perturbation from the measured response under some assumption on the coefficient (since these problems are under-determined, additional assumptions on the coefficient are required for uniqueness). Motivated by this work, in this talk, we will present several problems but with source and receiver at distinct points.

References

On Inverse Coefficient Estimates for Certain Starlike Functions

Md Firoz Ali\(^1\) and Vasudevarao Allu\(^2\)
\(^{1,2}\)Department of Mathematics, Indian Institute of Technology Kharagpur, India
\(^1\)E-mail: ali.firoz89@gmail.com; \(^2\)E-mail: alluvasu@maths.iitkgp.ernet.in

For \(-1 \leq B < A \leq 1\), by \(S^*(A,B)\) denote the class of normalized analytic functions in \(|z| < 1\) which satisfy the subordination relation \(zf'(z)/f(z) < (1 + Az)/(1 + Bz)\) and let \(\Sigma^*(A,B)\) be the corresponding class of meromorphic functions in \(|z| > 1\). In this talk, we discuss about the estimate of the absolute value of the Taylor coefficients \(a_n(-\lambda, f)\) of the analytic function \((f(z)/z)^{-\lambda}\) where \(f \in S^*(A,B)\) and \(\lambda > 0\). Finally, we conclude this talk by determining the coefficient estimate for inverses of functions in the classes \(S^*(A,B)\) and \(\Sigma^*(A,B)\).

Application of Semigroup theory for the Pure Fragmentation equation

Nilima Das\(^1\), Jitraj Saha\(^2\) and Jitendra Kumar\(^3\)
\(^{1,2,3}\)Department of Mathematics, IIT Kharagpur, India
\(^1\)E-mail: nilimadas1990@gmail.com; \(^2\)E-mail: jitraj@iitkgp.ernet.in; \(^3\)E-mail: jkumar@maths.iitkgp.ernet.in

The present work deals with the population balance equation considering only pure fragmentation using the semigroup theory of linear operators. The existence and uniqueness of nonnegative, strong solution is established via truncation approach of abstract Cauchy problem.
On Some Subclass of Harmonic Close-to-convex Mappings

Nirupam Ghosh1 and Vasudevarao Allu2

1,2Department of Mathematics, Indian Institute of Technology Kharagpur, India
1E-mail: nirupamghoshmath@gmail.com; 2E-mail: alluvasu@maths.iitkgp.ernet.in

In this presentation, we introduce a new subclass $W_0^\alpha_H$ of harmonic close-to-convex mappings in the unit disk \mathbb{D}. First we prove the coefficient conjecture of Clunie and Sheil-Small for functions in the class $W_0^\alpha_H$. We also derive a sufficient condition for f to belong to the class $W_0^\alpha_H$. Further we consider growth theorem, convolution, convex combination properties for functions in the class $W_0^\alpha_H$.

On Coefficient problem for bi-univalent analytic functions

Nisha Bohra

Department of Mathematics, University of Delhi, Delhi-110007, India
E-mail: nishib89@gmail.com

Let A be the class of functions f analytic in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions $f(0) = 0, f'(0) = 1$. The Koebe one-quarter theorem assures that the image of the unit disk \mathbb{D} under every univalent function $f \in A$ contains a disk of radius $1/4$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z (z \in \mathbb{D})$ and

$$f(f^{-1}(w)) = w \quad (|w| < r_0(f), r_0(f) \geq 1/4).$$

A function $f \in A$ is said to be bi-univalent in \mathbb{D} if f is univalent and f^{-1} has univalent analytic continuation to the unit disk \mathbb{D}. Here, in this paper, estimates for initial coefficients of Taylor-Maclaurin series of bi-univalent functions belonging to certain classes defined by subordination are obtained. Our estimates improve upon the earlier known estimates for second and third coefficient. The bound for the fourth coefficient is new. In addition, bound for the fifth coefficient is obtained for bi-starlike and strongly bi-starlike functions of order ρ and β respectively.

(This is a joint work with Prof. V. Ravichandran, Department of Mathematics, University of Delhi, Delhi.)

Pick functions involving triple gamma function

Sourav Das

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
E-mail: das90dma@iitr.ac.in

In this work some special functions involving triple gamma function are considered and is shown to have extension to Pick function. Interesting properties of the triple gamma function are also discussed.
On perturbations of g-fractions and some related consequences

Kiran Kumar Behera
Department of Mathematics, IIT Roorkee
E-mail: krn.behera@gmail.com

We study two perturbations in the parameter sequence $\{g_k\}_{k=0}^{\infty}$ of a g-fraction and their effects on the mapping properties of some particular special functions that those g-fractions represent. In this context, we introduce what we term as gap-g-fraction. As a consequence we characterize a class of Pick functions using one of the perturbed g-fraction.

On wavelet induced isomorphisms for joint $(d, -d)$-dilation wavelet and multiwavelet sets

Pooja Singh
Shri Ramswaroop Memorial University, Lucknow
E-mail: poojasingh07@rediffmail.com

For a dyadic wavelet set W, Ionascu [1] obtained a measurable self-bijection on the interval $[0,1)$, called the wavelet induced isomorphism of $[0,1)$, denoted by \tilde{h}_W. Extending the result for a d-dilation wavelet set, we characterize a joint $(d, -d)$-dilation wavelet set, where $[d]$ is an integer greater than 1, in terms of wavelet induced isomorphisms. Its analogue for a joint $(d, -d)$-dilation multiwavelet set has also been provided.

In addition, denoting by \tilde{h}_W^d, the wavelet induced isomorphism associated with a d-dilation wavelet set W, we show that for a joint $(d, -d)$-dilation wavelet set W, the measures of the fixed point sets of \tilde{h}_W^d and $\tilde{h}_{(-d)}^W$ are equal almost everywhere.

References

Iterative Approximation method with Averaged mapping for finite family of equilibrium problem and fixed point problem

Prashanta Majee1 and Chandal Nahak2

1Department of Mathematics, IIT Kharagpur-721302
1E-mail: prashanta@maths.iitkgp.ernet.in; 2E-mail: cnahak@maths.iitkgp.ernet.in

This paper aims to deal with an iterative method with averaged mapping to capture a common solution of a finite family of equilibrium problem and a fixed point problem of a finite collection of nonexpansive mappings in the setting of real Hilbert spaces. We prove that the sequences generated by the iterative scheme strongly converges to a common solution of the above said problems. Applications and numerical results are also given to illustrate the effectiveness and superiority of the proposed algorithm. The results presented in this paper are the extension and improvement of the recent results in the literature.
The wavelet packet transformation involving the fractional powers of Hankel-type integral transformation

Akhilesh Prasad1 and P.K. Maurya2
1,2Indian School of Mines, Dhanbad
1E-mail: apr_bhu@yahoo.com; 2E-mail: puneetmr24@gmail.com

The wavelet packet transformation involving the fractional powers of Hankel-type integral transformation is defined and discussed on its some basic properties. An inversion formula of this transformation is also obtained. Some examples are given.

Operators and Multipliers on Weighted Bergman Spaces

S. Naik1 and K. Rajbangshi2
1,2Guwahati University, Assam, India
1E-mail: spn20@yahoo.com; 2E-mail: karabi26@gmail.com

O. Blasco in [1] considered a weighted Bergman space using Dini-weight function. He proved that a linear operator \(T \) on weighted Bergman space to any Banach space \(X \) is bounded if and only if certain one parameter fractional derivative of a single \(X \)-valued analytic function satisfy some growth condition. In this paper, we use a three parameters fractional derivative of a single \(X \)-valued analytic function and provide an equivalent condition. In particular, we showed that if \(T \) is bounded, then using our result one can conclude much more than what has been achieved by Blasco. Our technique uses the Gaussian hypergeometric functions. Furthermore we supply some conditions on the parameters \(a, b \) and \(c \) under which the Gaussian hypergeometric function \(F(a, b; c; z) \) are Dini-weight.

References

Bounding inequalities for the generalized Voigt function

Rakesh K. Parmar
Department of Mathematics, Government College of Engineering and Technology, Bikaner-334004, Rajasthan, India
E-mail: rakeshparmar27@gmail.com

In this present paper, by applying several known upper bounds for the first-kind Bessel function \(J_\nu(x) \) given recently by (for example) Lommel’s, Minakshisundaram and Szász, Landau, Olenko and Krasikov, sharp bounding inequalities are obtained for the generalized Voigt function \(\Omega_{\mu,\alpha,\beta}(x, y) \) in terms of the incomplete confluent Fox-Wright function \(_1\Psi_0 \).
Analysis of plane wave propagation under fractional order thermoelasticity

Rakhi Tiwari¹ and Santwana Mukhopadhyay²

¹²Indian Institute of Technology (BHU), India

¹E-mail: rakhibhu2117@gmail.com; ²E-mail: mukho_santwana@rediffmail.com

The present work is concerned with the propagation of harmonic plane wave propagating with assigned frequency by implementing the thermo-elasticity theory based on fractional order heat conduction law where the fractional order parameter α satisfies ($0 < \alpha \leq 1$). After formulating the problem, the exact dispersion relation solutions for the plane wave are determined analytically and asymptotic expressions of different characterization of the wave are analyzed in two special cases, namely for high frequency field and low frequency field. Two different modes: thermal and elastic mode longitudinal waves are found. Finally we compute wave characterizations for the intermediate values of frequency and verify our analytical results for the limiting cases of wave frequency. A detailed analysis is presented to highlight the effects of fractional order parameter, α on the wave fields. Several important points are highlighted and the most important point which we have found is that in the case of thermal wave, when α goes beyond 0.5, the nature of wave changes significantly and as α gets the value nearer to 1 it behaves more similar nature with the LS model.

Bessel wavelet Convolution Involving Hankel Transform

S. K. Upadhyay¹ and Reshma Singh²

¹²Department of Mathematical Sciences, IIT (B.H.U.), Varanasi, India

¹E-mail: sk_upadhyay2001@yahoo.com; ²E-mail: reshmasingh.rs.apm12@itbhu.ac.in

The convolution associated with the Bessel wavelet transform is investigated and other results related to the aforesaid convolution are discussed. Boundedness of the normalized Bessel wavelet, transform on generalized Sobolev space $B^\mu_{p,k}(I)$ is obtained by using the theory of Hankel transform.

An Exact Smooth Convex Reformulation of the Quadratic Programme

Rudrajit Sadhu¹ and C. Nahak²

¹²Department of Mathematics, IIT Kharagpur-721302, India

¹E-mail: rudrajitsadhu@gmail.com; ²E-mail: cnahak@maths.iitkgp.ernet.in

The quadratic programme with linear equality constraints, is reformulated as an unconstrained minimization of a differentiable quadratic function. Unlike other penalty functions, the parameter involved in the unconstrained reformulation can be easily determined by the Frobenius norm of the Hessian matrix of the original objective function. Moreover it has been proved that, whenever the original quadratic programme possesses a solution, the reformulated objective function is convex.
Turán type inequalities for some special functions

Árpád Baricz1, Saminathan Ponnusamy2 and Sanjeev Singh3

1Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary and Department of Economics, Babeș-Bolyai University, Cluj-Napoca 400591, Romania
\textit{E-mail:} bariczocsi@yahoo.com;
2Indian Statistical Institute, Chennai Centre, Society for Electronic Transactions and Security, MGR Knowledge City, CIT Campus, Taramani, Chennai-600113, India
\textit{E-mail:} samy@iitm.ac.in
3Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India
\textit{E-mail:} sanjeevsinghiitm@gmail.com

We present some Turán type inequalities for Struve functions of the first kind by using various methods developed in the case of Bessel functions of the first and second kinds. We obtain new formulas, such as Mittag-Leffler expansion and infinite product representation for Struve functions of the first kind, which may be of independent interest. Moreover, we derive some Turán type inequalities for the general Bessel function, monotonicity and bounds for its logarithmic derivative. We also find the series representation and the relative extrema of the Turánian of general Bessel functions.

Weighted pseudo Almost periodic solutions for two-term time fractional impulsive differential equations

Vikram Singh

Department of Mathematics, Indian Institute of Technology Roorkee
Roorkee-247667, India
\textit{E-mail:} vikramiitr1@gmail.com

In this paper, we are interested to establish the existence and uniqueness of the piecewise weighted pseudo almost periodic mild solutions for the following two-term time fractional impulsive differential equations

\[\begin{align*}
&c^\mu y(t) + \beta^\nu y(t) = Ay(t) + c^\alpha f(t, y(t)), \quad t > 0, t \neq t_i, \\
&\Delta y(t_i) = y(t_i^+) - y(t_i^-) = I_i(y(t_i)), \quad i \in \mathbb{Z}^+, \\
&y(0) = y'(0) = 0.
\end{align*} \]

where $0 < \mu \leq \nu \leq 1, \beta > 0, c^\alpha$ denotes the Caputo fractional derivative of order $\alpha > 0$. f and I_i are appropriate functions which satisfy some suitable conditions. $y(t_i^-)$ and $y(t_i^+)$ represent the left and right limits of $y(t)$ at $t_i, i \in \mathbb{Z}^+$, respectively. The results are obtained by using Banach and Schaefer’s fixed point theorems for Lipschitz and non-Lipschitz forcing terms in a Banach space. At last, an example is provided to show the feasibility of the theory discussed in this paper.
An extension of Vietoris’ inequalities for positivity of trigonometric polynomials

Priyanka Sangal
Department of Mathematics, Indian Institute of Technology Roorkee, India
E-mail: sangal.priyanka@gmail.com

In this work, a generalization of renowned Vietoris’ theorem for the positivity of cosine and sine sums is provided. Conditions on specific type of the coefficient \(\{a_k\} \) are found such that the corresponding sine sum \(\sum_{k=1}^{n} a_k \sin k\theta \) and cosine sum \(a_0 + \sum_{k=1}^{n} a_k \cos k\theta \) are positive in the unit disc \(\mathbb{D} \). This idea is extended to find the monotonicity property of cosine sums as well. Among several applications possible, the starlikeness of the Gaussian Hypergeometric function is outlined.

Estimates for Coefficients of certain Analytic Functions

Shelly Verma
Department of Mathematics, University of Delhi, Delhi-110007, India
E-mail: jmdsv.maths@gmail.com

For \(-1 \leq B \leq 1\) and \(A > B\), we consider the class of Janowski starlike functions consisting of all normalized analytic functions \(f \) defined by the subordination \(zf'(z)/f(z) \prec (1 + Az)/(1 + Bz) (|z| < 1) \). For functions in this class and its meromorphic counterpart, we investigate the inverse coefficient problem. Also, for \(-1 \leq B \leq 1 < A\), the sharp bounds for first five coefficients for inverse functions of Janowski convex functions are determined. A simple and precise proof for inverse coefficient estimations for Janowski convex functions is provided for the case \(A = 2\beta - 1 (\beta > 1) \) and \(B = 1 \). As an application, for \(F := f^{-1}, A = 2\beta - 1 (\beta > 1) \) and \(B = 1 \), the sharp coefficient bounds of \(F/F' \) are obtained when \(f \) is a Janowski starlike or Janowski convex function. Further, we provide the sharp coefficient estimates for inverse functions of normalized analytic functions \(f \) satisfying \(f'(z) \prec (1 + z)/(1 + Bz) (|z| < 1, -1 \leq B < 1) \) and coefficient estimates for functions in the meromorphic counterpart of Janowski starlike class.

(This is a joint work with V. Ravichandran.)
Galerkin method for fractional integro-differential equations with weakly singular kernel

Shiva Sharma and Kamlesh Kumar
1,2Department of Mathematical Sciences, IIT (BHU) Varanasi, India
1E-mail: shivasharma.math@gmail.com

The purpose of this paper is to present an approximate method for solving the fractional integro-differential equations (FIDEs) with weakly singular kernel. The approximate method is based on the Galerkin method for solving Volterra integral equations. FIDEs can be considered as Volterra integral equation of second type. Galerkin method with a simple addition is applied to get the approximate solution of FIDEs. The convergence analysis of the presented method is also established. Jacobi polynomial is considered as basis function to get the numerical solution of the FIDEs. Illustrative examples with different solutions are considered to show the validity and applicability of the proposed method. Numerical results show that the proposed method works well and achieve good accuracy even for less number of polynomials.

Quasi-continuity on Product Spaces

V. Srinivasa Kumar
Deptt. of Mathematics, JNTUH College of Engineering, JNTU, Kukatpalle, Hyderabad-500085, India
E-mail: srinu_vajha@yahoo.co.in

In this present paper, the notion of Quasi-continuity on product space is introduced. The set of all such Quasi-continuous and bounded functions defined on a closed and bounded interval is established to be a commutative Banach algebra under supremum norm.

Convolution properties of a Harmonic function with n-Starlike mappings and its partial sums

Subzar Ahmad Beig
Department of Mathematics, University of Delhi, Delhi-110007, India
E-mail: beighsubzar@gmail.com

In 1981, Sălăgean defined the n-starlike functions. In this paper, we check the univalency and the convexity in the direction $\alpha (0 \leq \alpha < 2\pi)$ of the convolution $\phi \ast f = \phi \ast h + \phi \ast g$, of some harmonic functions $f = h + g$ with n-starlike function ϕ. Also, we prove all the partial sums of the product $\phi \ast K = \phi \ast H + \phi \ast G$ and $\phi \ast L = \phi \ast M + \phi \ast N$ are univalent and convex in the direction of real-axis, where ϕ is 6-starlike, $k = H + G$ is harmonic Koebe function and $L = M + N$ is harmonic half-plane mapping introduced by Clunie and Sheil-Small in 1984.

(This is joint work with V. Ravichandran)
In this paper, we introduced a vector valued paranormed space \(X(E, \Delta^m, M, p, s) \) using Orlicz function \(M \). Class of vector valued sequences \(X(E, \Delta^m, M, p, s) \) is defined as

\[
X(E, \Delta^m, M, p, s) = \left\{ x \in W(E) : \left(|\nu_k|^{-s} \left[M \left(\frac{q(\Delta^m x_k)}{\rho} \right) \right]^{p_k} \right) \in X \text{ for some } \rho > 0, s \geq 0 \},
\]

where \((E, q)\) is a seminormed space, \(p = (p_k) \) is a bounded sequence of positive real numbers such that \(\inf_k p_k > 0 \), \(\Delta^m x_k = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x_{k+i}, m \in \mathbb{N}_0 = \{0, 1, 2, 3, \cdots\} \), \(W(E) = \{ x = (x_k) : x_k \in E \} \) is a linear space under operations of vector addition and scalar multiplication, and \(\nu = (\nu_k) \) be a bounded sequence of real or complex numbers such that \(\inf_k |\nu_k| > 0 \). Further, let \(X \) be a normal sequence algebra with absolutely monotone norm \(\| \cdot \|_X \) and having a Schauder basis \((e_k) \), where \(e_k = (0, 0, \cdots, 0, 1, 0, \cdots) \) with 1 in \(k \)th place. The topology on \(X(E, \Delta^m, M, p, s) \) is introduced with the help of paranorm \(g \), which is given by

\[
g(x) = \sum_{i=1}^{m} q(x_i) + \inf \left\{ \rho^{1/\rho^k} : \left\| \left(|\nu_k|^{-s} \left[M \left(\frac{q(\Delta^m x_k)}{\rho} \right) \right]^{p_k} \right) \right\|^{1/H}_X \leq 1, n \in \mathbb{N} \},
\]

where \(x \in X(E, \Delta^m, M, p, s) \) and \(H = \max(1, \sup_k p_k) \). Completeness, normality, inclusion relations etc. for this space is obtained. The results of this paper includes, as particular case, some of the known scalar and vector valued sequence spaces.

Subordination Properties for Starlike Exponential functions

Sushil Kumar
Bharati Vidyapeeth’s College of Engineering, Delhi-110063, India
E-mail: sushilkumar16n@gmail.com

Let \(p \) be an analytic function defined in the unit disk \(D = \{ z : |z| < 1 \} \) with \(p(0) = 1 \). In this note, we determine the condition on \(\beta \) so that \(p(z) \) is subordinated to exponential function when \(p(z) + \beta z p'(z)/p'(z) \), \(j=0,1,2 \) is subordinated to \(\sqrt{1+z} \). In addition, these results are applied to obtain sufficient conditions for normalized analytic functions \(f \) belong to certain subclasses of starlike functions.

(This is joint work with Prof. V. Ravichandran)
On Wavelet Induced Isomorphisms for Reducing Subspaces

Swati Srivastava
Shri Ramswaroop Memorial University
E-mail: swatissrivastava276@gmail.com

In this paper, we adapt the notion of a wavelet induced isomorphism of \([0, 1]\) associated with a wavelet set, introduced by E.J.Ionascu in the paper [1] to the case of an \(\mathcal{H}\) wavelet set, where \(\mathcal{H}\) is a reducing subspace of \(L^2(\mathbb{R})\). We characterize all these wavelet induced isomorphisms and provide specific examples of this theory in the case of symmetric \(\mathcal{H}\)-wavelet sets.

References

Common Fixed Point Theorems for two Selfmaps in a Complete \(D^*\)-metric spaces

Upender Samudrala
Department of Mathematics, Nagarjuna Government College (Autonomous), Nalgonda-508001, Telangana, India
E-mail: upendersamudrala@gmail.com

The purpose of this paper is to prove a common fixed point theorem for two selfmaps and a common fixed point theorem for two selfmaps in a complete \(D^*\)-metric space. Also we show that a common fixed point theorem for two selfmaps in a metric space provided by Das and Naik [1] follows as a particular case of our result.

References

Level sets of \((P, Q)\) outer generalized Pseudo Spectrum

D. Sukumar\(^1\) and S. Veeramani\(^2\)
\(^1,2\)Department of Mathematics, IIT Hyderabad-502285, India
\(^1\)E-mail: suku@iith.ac.in; \(^2\)E-mail: ma13p1005@iith.ac.in

Let \(X\) be complex Banach space. Given \(T, P, Q \in B(X)\) with \(P\) and \(Q\) are idempotent operators, if there exists an operator \(S\) such that
\[
STS = S, \quad ST = P, \quad I - TS = Q
\]
then we say that \(T\) is \((P, Q)\) outer generalized invertible and \(S\) is \((P, Q)\) outer generalized inverse of \(T\), denoted by \(T^{(2)}_{P, Q}\). Globevnik [1] proved that, for \(\epsilon > 0\), the level set \(\{ \lambda \in \rho(T) : \| (T - \lambda I)^{-1} \| = \epsilon \}\), corresponding to \(\epsilon\), has empty interior in the unbounded component of \(\rho(T)\). Using this result, Shrgorodsky in [2], discussed about intricacies of the definition of pseudo spectrum. We extend Globevnik result as follows: for \(\epsilon > 0\), a compact operator \(T\) and a nonzero, non compact, idempotent operator \(P\) which is commuting with the operators \((T - \lambda I)^{-1}\) for \(\lambda \in \rho(T)\), the level set of \((P, I - P) - \epsilon\)
pseudo spectrum \(\{ \lambda \in \mathbb{C} : \| (T - \lambda I)^{(2)}_{P, I-P} \| = \epsilon \}\) has empty interior.
 Bounds for the second Hankel Determinant and the Fekete-Szegő Coefficient Functional of Certain Analytic Functions

Kanika Khatter
Department of Applied Mathematics, Delhi Technology University, Delhi-110042, India
E-mail: kanika.khatter@yahoo.com

Let \(\varphi \) be an analytic function with the positive real part, \(\varphi(0) = 1 \) and \(\varphi'(0) > 0 \). Let \(f(z) = z + a_2z^2 + a_3z^3 + \cdots \) be an analytic function satisfying the subordination \(\alpha f'(z) + (1 - \alpha)zf'(z)/f(z) \prec \varphi(z) \), \((f'(z))^\alpha (zf'(z)/f(z))^{(1-\alpha)} \prec \varphi(z) \), \((f'(z))^\alpha (zf''(z)/f'(z))^{(1-\alpha)} \prec \varphi(z) \), \((f'(z))^\alpha (zf''(z)/f'(z))^{(1-\alpha)} \prec \varphi(z) \). For these functions, the bounds for the second Hankel determinant \(a_2a_4 - a_3^2 \) as well as the Fekete-Szegő coefficient functional are obtained. Our results include some previously known results.

(This is a joint work with Dr. V. Ravichandran and Dr. S. Sivaprasad Kumar)

Common fixed Point Theorem for \(\alpha - Z - \)contraction and Applications to ODE and Dynamic Programming

G.V.V.Jagannadha Rao\(^1\), S.K.Padhan\(^2\) and Hemant Kumar Nashine\(^3\)

\(^{1,2}\)Department of Mathematics, VSSUT, Burla, Sambalpur, Odisha-768018, India
\(^1\)E-mail: gvvjagani@gmail.com; \(^2\)E-mail: skpadhan_math@vssut.ac.in
\(^3\)Department of Mathematics, Texas A & M University- Kingsville-78363-8202, Texas, USA
\(^3\)E-mail: drhkmashine@gmail.com

In this paper, we introduce notion of \(\alpha - Z - \)contraction condition in metric-like space and derive based fixed points results for generalized \(\alpha \)-admissible pair in the underlying space. We also derive some consequences from our obtained results. Useful examples are illustrated to justify the applicability and effectiveness of results presented herein. As applications, the existence of solution of fourth-order two-point boundary value problems and existence of common solution for system of functional equations arising in dynamic programming have been studied.
Quasi-orthogonality of some Basic Hypergeometric Polynomials

P. Gochhayat1, K. Jordaan2 and P.P. Kar3

1,3Department of Mathematics, Sambalpur University, Sambalpur, Odisha-768019, India
2Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa

1E-mail: pgochhayat@gmail.com; 3E-mail: pinakipk@gmail.com; 2E-mail: kjordaan@up.ac.za

The notion of quasi-orthogonal polynomials which is introduced and studied by Riesz\cite{10}, latter by Chihara\cite{2} play a significant role in the area such as interpolation theory, electrostatics, rational approximations etc. Recent contribution on this direction may be found from the works due to Brezinski et.al.\cite{1}, Joulak\cite{9}, Johnston and Jordaan\cite{7} and Johnston et.al.\cite{8}. The question is whether similar techniques can be used to study the properties of the zeros of basic hypergeometric polynomials. Not much known about the quasi-orthogonality and real zeros of basic hypergeometric polynomials. In \cite{6}, Gochhayat et.al. studied the interlacing properties and bounds for the zeros of $2\phi_1$ hypergeometric polynomials and the little $q-$Jacobi polynomials. In the present paper, we use a consequence of generalized version of results by Johnston and Jordaan\cite{7} and give new information about the zeros of some $2\phi_2$ and $3\phi_2$ quasi-orthogonal polynomials.

References

Certain $q-$Series Identities and Applications to Lecture Hall Type Partitions

K. Raghavendar
Department of Mathematics, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu, India
E-mail: raghavendar248@gmail.com

In this work, using the contiguous relations for basic hypergeometric series q summation formula and some recurrence relations for $q-$Jacobi polynomials are found. Some of these results are new and the proof of remaining are shorter than the one exist in the literature. Usage of one of these results in verifying Lecture Hall type partitions is also exhibited.

On the degree of approximation of functions in a weighted Lipschitz class by almost matrix means of their fourier series

Arti
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
E-mail: artirathore2010@gmail.com

In this paper, we obtain the degree of approximation of functions belonging to the weighted Lipschitz class $W(L^p, \xi(t))$ and their conjugate through almost matrix means of their Fourier series and conjugate Fourier series, respectively. We also derive some corollaries from our theorems.

Approximation of \tilde{f}, conjugate function of f belonging to a subclass of L^p-space, by product means of conjugate Fourier series

Soshal
Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
E-mail: sainisoshol25@gmail.com

The deviation of \tilde{f}, conjugate function of f, by various summability means of its conjugate Fourier series has been of growing interest of researchers. Recently, the authors [1] has estimated the pointwise deviation of \tilde{f} in terms of modulus of continuity in L^p-space by product means. In this paper, we obtained the deviation of \tilde{f}, conjugate function of f belonging to a subclass of $L^p(p \geq 1)$-space, with less assumption conditions on the product matrix. We introduce different conditions on the modulus of continuity. We also discuss the case for $p = 1$ separately. Our results are free from p.

References

On some coefficient Bounds associated with k-th root transformation using Quasi- Subordination

C.Ramachandran1, T. Soupramanien2 and J. Sokół3

1Department of Mathematics, University College of Engineering Villupuram, Anna University, Villupuram-605103, Tamilnadu, India
E-mail: crjsp2004@yahoo.com

2 Department of Mathematics, IFET College of Engineering, Gangarampalayam, Villupuram-605108, Tamilnadu, India
E-mail: soupramani@gmail.com

3Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
E-mail: jsokol@prz.edu.pl

Quasi subordination is an essential concept in the area of complex function theory. It is a remarkable topic which collaborates the concept of both subordination and majorization. Exploiting this article, we estimate the Fekete-Szegő Functional with k-th root transform for certain classes of analytic univalent functions using quasi subordination. The authors sincerely hope this article will refresh this concept and persuade the other young researchers to work in this quasi subordination in the near future in the area of complex function theory.

Transformation of LQR Problem for Descriptor System to LQR problem for State Space System

Vikas Kumar Mishra1 and Nutan Kumar Tomar2

12Department of Mathematics, Indian Institute of Technology Patna, Patna, India
1E-mail: vikas.mishra45@gmail.com; 2E-mail: nktomar@iitp.ac.in

The paper studies the following linear quadratic regulator (LQR) problem

Minimize $J(x,u) = \int_0^\infty (x^TQx + u^TRu)dt,$

subject to

$Ex'(t) = Ax(t) + Bu(t),$ (2)

where $E, A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times r}$ are arbitrary constant matrices, and rank $E = n_0 \leq n$. The vector $x(t) \in \mathbb{R}^n$ is called the state and $u(t) \in \mathbb{R}^r$ is called the control (input) vector of the system. Moreover, the weighting matrices Q and R are real symmetric positive semi definite and positive definite respectively. Clearly, the state space system given by

$\dot{x}(t) = Ax(t) + Bu(t),$ (3)

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times r}$ is a particular case of system (2). In modeling of a real world problem, the employment of various physical laws naturally yields systems of the form (2). So, in this work we have transformed the LQR problem for descriptor system (2) into the LQR problem for state space system (3). The approach is totally algebraic and based on the matrix theory. The optimal control is synthesized as state feedback. An example is provided to illustrate the effectiveness of the presented theory.
On the Distribution of Non-Zero Zeros of Generalized Mittag-Leffler Functions

Hemant Kumar1 and M. A. Pathan2
\1Department of Mathematics, D.A.V.(P.G.) College Kanpur-208001 India
\textit{E-mail:} palhemant2007@rediffmail.com;
2Centre for Mathematical and Statistical Sciences, Peechi Campus, KFRI, Peechi-680653, Kerala, India
\textit{E-mail:} mapathan@gmail.com

In this work, we derive some theorems involving distribution of non-zero zeros of generalized Mittag-Leffler functions of one and two variables.

Two Fixed Point Theorems for Non-Expansive Mappings

Anushri A. Aserkar1 and M. P. Gandhi2
1Department of Mathematics, Rajiv Gandhi College of Engineering and Research, RTM Nagpur, India
\textit{E-mail:} aserkar.aaa@rediffmail.com;
2Department of Mathematics & Humanities, Yeshwantrao College of Engineering, RTM Nagpur, India
\textit{E-mail:} manjusha_g2@rediffmail.com

In the present paper two unique common fixed point theorems for non-expansive mapping which in pair satisfy weakly compatible condition. An attempt has been made to prove the first result for weaker Suzuki type (C) condition and the second outcome is proved on convex metric space. Both the results generalize many results available in the literature.

On Algebraic Properties of Horizontally Quasi-continuous Functions

Bhagath Kumar Soma1 and V. Srinivasa Kumar2
1Department of Basic Sciences, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Kukatpally Hyderabad-500090, Telangana State, India
\textit{E-mail:} somabagh@gmail.com;
2Department of Mathematics, JNTUH College of Engineering, JNTU, Kukatpally, Hyderabad-500085, Telangana State, India
\textit{E-mail:} srinu_vajha@yahoo.co.in

In this paper, we examine some algebraic properties of real valued horizontally quasi-continuous functions. The notions of upper and lower horizontally quasi-continuous functions are introduced. Examples are provided wherever necessary.
Trajectory controllability of fractional-order $\alpha \in (1,2]$ integro-differential system with nonlocal condition

V. Srinivasan
Department of Mathematics, Indian Institute of Technology Roorkee, India
E-mail: srinivasan88.v@gmail.com

In this paper, we consider the following nonlinear fractional-order integro-differential system

$$C D_0^{\alpha} y(t) = Ay(t) + B(t, u(t)) + F \left(t, y(t), \int_0^t G(t, s, y(s)) ds \right), \quad t \in [0, \tau],$$

with nonlocal initial conditions $y(0) + h(y) = y_0$ and $y'(0) = y_1$, where the state $y(t)$ and the control $u(t)$ take their values in the Hilbert spaces Y and U respectively, for each t. Here, the positive constant $\tau < \infty$, $C D_0^{\alpha}$ is the Caputo fractional derivative for $1 < \alpha \leq 2$. The operators A, B, F, G and h are defined as follows: $A : D(A) \subset Y \to Y$ is a closed linear operator with dense domain $D(A)$ and generates a strongly continuous α-order cosine family $C_\alpha(t)$, the maps $B : [0, \tau] \times U \to Y$, $G : \Delta \times Y \to Y$, $F : [0, \tau] \times Y \times Y \to Y$ and $h : C([0, \tau]; Y) \to Y$ are nonlinear operators, where $\Delta = \{(t, s) \in [0, \tau] \times [0, \tau] : 0 \leq s \leq t \leq T\}$ and $C([0, \tau]; Y)$ represents the space of all continuous functions. We study the trajectory controllability of (4) in the finite and infinite dimensional spaces with the suitable assumptions. Finally, some examples will be given to illustrate the proposed theory.

Existence and Concentration of Solutions for a Class of Elliptic PDE’s involving p-biharmonic Operator

Ratan Kr Giri1, Debajyoti Choudhuri2 and Shesadev Pradhan3

1Department of Mathematics, National Institute of Technology, Rourkela, India
1E-mail: giri90ratan@gmail.com; 2E-mail: choudhurid@nitrkl.ac.in; 3E-mail: pradhansh@nitrkl.ac.in

In this talk, an existence result pertaining to a nontrivial solution to the problem

$$\begin{cases} \Delta^2_p u - \Delta_p u + \lambda V(x) |u|^{p-2} u = f(x,u), & x \in \mathbb{R}^N, \\ u \in W^{2,p}([\mathbb{R}^N]), \end{cases}$$

where $\lambda > 0$, $p > 1$, $N > 2p$ and $V \in C(\mathbb{R}^N, \mathbb{R}^+)$, $f \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ with certain properties will be presented. Further, the concentration of solutions to the problem will be discussed on the set $V^{-1}(0)$ as $\lambda \to \infty$.

References

Common Fixed point theorem in Intuitionistic Menger spaces by using implicit relation with the property CLR_{ST}

Dilip Kumar Gupta1 and Naval Singh2

1Department of Mathematics, People’s College of Research & Technology Bhopal (M.P.), India
E-mail: dilipkmaths@gmail.com;

2Department of Mathematics, Govt. Science & Commerce College, Benazeer Bhopal (M.P.) India

In this present paper, we prove some common fixed point theorems for weakly compatible mappings in intuitionistic Menger space using the common property (E.A.) for four finite families of self mappings.
Spectral Theorem for Quaternionic Compact Normal Operators

G. Ramesh\(^1\) and P. Santhosh Kumar\(^2\)

\(^1,2\)Department of Mathematics, IIT Hyderabad, Andhra Pradesh India
\(^1\)E-mail: rameshg@iith.ac.in; \(^2\)E-mail: ma12p1004@iith.ac.in

In this talk, we prove two versions of the spectral theorem for quaternionic compact normal operators, namely the series representation and the resolution of identity form. We prove the series representation by using simultaneous diagonalization. The resolution of identity version is proved by associating a complex linear operator to the given quaternionic linear operator and applying the classical result. In the process we prove some of the interesting results on spherical spectrum of compact operators and the singular value decomposition.

Extension of Prefunctions and its relation with Mittag-Leffler function

A. P. Hiwarekar

Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering and Technology, Baramati, (S. P. University of Pune) Vidyaganjari, Baramati, Dist.Pune, Maharashtra, India

E-mail: hiwarekaranil@gmail.com

Exponential functions, trigonometric functions and hyperbolic functions play very important role in pure and applied mathematics. These functions are useful for handling many engineering and technological problems. Extension of these functions is very interesting area of latest developments.

This paper devotes the study of pre-trigonometric and pre-hyperbolic functions. Starting with basic definitions, these functions are further generalized. It is shown that these generalized functions are related with well known Mittag-Leffler function which plays very important role in fractional calculus. Using Laplace transform, we have shown that they are solutions of differential equations. Finally we illustrate some properties of these functions.

Equilibrium problems under generalized monotonicity in FC spaces

Gayatri Pany\(^1\), Sabyasachi Pani\(^2\) and R.N.Mohapatra\(^3\)

\(^1,2\)Indian Institute of Technology, Bhubaneswar-751007, India
\(^1\)E-mail: gp11@iitbbs.ac.in; \(^2\)E-mail: spani@iitbbs.ac.in;
\(^3\)University of Central Florida, Orlando, Fl 32816, USA

E-mail: ram.mohapatra@ucf.edu

In this paper, we have studied a class of mixed equilibrium problems under generalized $\alpha-\eta$ quasimonotonicity in finitely continuous topological spaces, in short FC spaces. Existence of the solution to the problem is established by relaxing the convexity structure and the linearity condition using RKKM technique. We have proposed an iterative scheme using auxiliary principle technique. Solvability of the auxiliary equilibrium problem is also established. Finally, convergence of the iterates to the exact solution is proved. The results obtained in this paper improve and generalize some results from recent literature in the framework of FC space under weaker conditions. They are also useful to solve problems where the domain and range of the underlying mappings lack the convexity structure.
Stability criteria for uncertain $2-D$ Discrete systems in presence of generalized overflow nonlinearities

Siva Kumar Tadepalli1, V. Krishna Rao Kandanvi2 and Abhilav Vishwakarma3

1Electronics Engineering Department, Bhilai Institute of Technology, Durg, India
2Department of Electronics and Communication Engineering Motilal Nehru National Institute of Technology Allahabad, Allahabad India
3E-mail: vabhilav@gmail.com

This work considers the problem of global asymptotic stability of two-dimensional ($2-D$) discrete systems in the presence of generalized overflow nonlinearities. The $2-D$ models considered are the well known Fornasini Marchesini Second Local state-space model and the Roesser model. The effect of uncertainties and interval-like-time-varying delay on the system is also considered in the study. Using reciprocally convex approach we provide linear matrix inequality (LMI) based stability criteria. Numerical examples are provided to illustrate the applicability of the results. Generalized overflow nonlinearities occur during the finite wordlength (or fixed-point) implementation of discrete systems. In the previous studies a delay-dependent stability criterion for $2-D$ discrete systems under the influence of generalized overflow has not been provided. This work finds significance in the light that the models considered for the purpose of study are useful for representing a wide range of practical systems such as heat diffusion, thermal processes, river pollution modeling, image data processing, seismographic data processing, wireless sensor networks, iterative learning control, etc.

Non-linear stability of Triangular libration points in elliptic restricted three body problem with radiating and triaxial primaries

T. Usha1 and Ashutosh Narayan2

1Department of Applied Mathematics Bhilai Institute of Technology, Durg
2E-mail: usha156@gmail.com

The non-linear stability analysis of the elliptic restricted three body problem has been considered. The model consists of three bodies, called primaries. These primaries move orbit around each other taking elliptic path. The massive of the three primaries is a radiating one, the less massive one is triaxial. The third body has negligible mass as compared to the two primaries. This body does not effect the two primaries but is affected by both. The system has solutions called the equilibrium solutions. There are five equilibrium points. The three equilibrium points lie on a straight line configuration with the primaries, hence are called collinear points. Two of them form triangular configuration with the primaries and so are called Triangular equilibrium points. The stability of the triangular libration points under the presence and absence of resonances of third order. For the stability analysis of the non-resonance case KAM theorem has been used. The Hamiltonian of the problem has been expanded in small neighborhood of the triangular libration points correct to fourth order of terms. The normalization of the Hamiltonian has been done by Birkhoff’s method. The equilibrium position is found to be unstable for small values of e (eccentricity) for all resonance cases of third order using Markeev’s theorem. This work is significant as resonances are often cause perturbations in the system. So this study can help us to explore resonances and their nature in similar type of models.
Weak solutions to generalized stochastic Burgers’ equation perturbed by a space-time white noise

Vivek Kumar

Department of Mathematics, Indian Institute of Technology, Roorkee, Haridwar-247667, India
E-mail: vk592.dma2014@iitr.ac.in

The existence of the weak solutions is shown for the one-dimensional generalized stochastic Burgers’ equation having polynomial nonlinearity on \([0, 1]\) forced by space-time white noise with non-Lipschitz coefficient term and Dirichlet boundary conditions. The existence of the solution is obtained by an appropriate approximation procedure.

References

Certain Subclasses of Bi-Univalent functions Associated with Salagean Operator

A. L. Pathak\(^1\), Saurabh Porwal\(^2\) and R. Agarwal\(^3\)

\(^1,2,3\)Department of Mathematics, Brahmanand College, The Mall, Kanpur (U.P.)-208004, India
\(^1\)E-mail: alpathak.bnd@gmail.com; \(^2\)E-mail: saurabh.840@rediffmail.com; \(^3\)E-mail: ritesh.840@rediffmail.com

The purpose of the present paper is to introduce new subclasses of the class of bi-univalent functions by using Salagean operator. Furthermore, we obtain estimates on the coefficients \(|a_2|\) and \(|a_3|\) for functions of these subclasses. Relevant connections of well-known results are briefly indicated.
Convolutions in time dependent heat conduction equations

Arcadii Z. Grinshpan1 and Shelly Arora2

1Department of Mathematics and Statistics, College of Arts and Science, University of South Florida, Tampa, FL-33612, USA
E-mail: agrinshp@mail.usf.edu
2Department of Mathematics, Punjabi University, Patiala-147002, Pb. INDIA
E-mail: aroshelly@gmail.com

Weighted norm inequalities for convolutions are employed to analyze solutions of general heat conduction equations. The stability behavior of these equations will be talked about in connection with the hypergeometric form of Hermite interpolating polynomials. Various special cases will be considered.

Robin Boundary value problems for a singularly Perturbed weakly coupled system of Convection-Diffusion equations having discontinuous source term

S. Chandra Sekhara Rao1 and Sheetal Chawla2

1,2Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
1E-mail: scsr@maths.iitd.ac.in; 2E-mail: chawlaasheetal@gmail.com

In this paper, we consider a weakly coupled system of convection-diffusion equations subject to Robin type boundary value problems having boundary and interior layers. The diffusion term of each equation is multiplied by small singular perturbation parameters which are assumed to be different in magnitude. A central difference approximation has been used to obtain the difference scheme for the given problem in conjunction with piecewise uniform Shishkin mesh. Presence of small perturbation parameters and discontinuity in the source term leads to overlapping and interacting boundary and interior layers. It is proved that the numerical approximation produced by this method is almost first order uniformly convergent with respect to both small parameters. Numerical results are presented which validate the theoretical results.

Solutions to abstract Volterra Integro-Differential equation with repeated deviating arguments

Rajib Haloi

Department of Mathematical Sciences, Tezpur University, Napaam, Tezpur-784028, India
E-mail: rajib.haloi@gmail.com

We study the existence and uniqueness of solutions for a non-autonomous Volterra integro-differential equation of parabolic type with repeated deviating arguments in an arbitrary Banach space. The existence of a solution is established in a Banach space with smooth source terms in a Banach space. While the existence and uniqueness of a solution are proved in a Hilbert space without smoothness conditions. The continuation of a solution is also discussed of the problem. As an application, we illustrate the theory by an example.
Iterative roots of Continuous functions with Non-isolated Forts

V.Murugan1 and M.Suresh Kumar2

1Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Mangalore-575025, India
\textit{E-mail: mrgniitm@gmail.com}
2Department of Mathematics, Gandhigram Rural Institute, Dindigul-624302
\textit{E-mail: sureshkumarmsu2009@gmail.com}

Iterative root problem is one of the classical problems in analysis and is described as follows: Given a self-map F and a positive integer n, find a self-map f such that $f^n = F$, where f^n denotes the n-fold composition of f with itself. This problem is solved only for a class of piecewise monotone continuous functions on a compact interval. In this paper, we present results on the existence of iterative roots of continuous functions depending on the number of non-isolated forts.

Hyers-Ulam Stability of a Semiclosed Operator

S.Balaji

VIT University, Vellore
\textit{E-mail: balajimath@gmail.com}

In a Hilbert space \mathcal{H}, an operator T is semiclosed provided that there exists a bounded operator B on \mathcal{H}, with range the domain of T, such that TB is bounded. This is the smallest class of operators contains all closed operators and closed under sum and product. We discuss the Hyers-Ulam stability of an operator in this class.

Convolution properties of some harmonic mappings in the right half-plane

Raj Kumar1, Michael Dorff2, Sushma Gupta3 and Sukhjit Singh2

1Department of Mathematics, DAV University, Jalandhar-144012, India
\textit{E-mail: rajgarg2012@yahoo.co.in}
2Department of Mathematics, Brigham Young University, Provo, Utah, 84602, USA
\textit{E-mail: mdorff@math.byu.edu}
3,4Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106 (Punjab), India
\textit{E-mail: sushmagupta1@yahoo.com; E-mail: sukhjit_d@yahoo.com}

It is well known that harmonic convolution of two normalized right half-plane mappings is convex in the direction of the real axis provided that the convolution is locally univalent and sense-preserving in $E = \{z : |z| < 1\}$. Further, it is also known that the condition, the convolution is locally univalent and sense-preserving in E, can be dropped when one of the convoluting functions is the standard right half-plane mapping with dilatation $-z$ and other is the right half-plane mapping with dilatation $e^{i\theta}z^n$, $n = 1, 2, \theta \in \mathbb{R}$. It is also known that this result does not hold for $n = 3, 4, 5, \ldots$. In this paper, we generalize this result by taking the dilatation of one of the right half-plane mappings as $e^{i\theta}z^n$ ($n \in \mathbb{N}$, $\theta \in R$) and that of the other as $(a-z)/(1-az)$, $a \in (-1, 1)$. We shall prove that our result holds true for all $n \in \mathbb{N}$, provided the real constant a is restricted in the interval $[(n-2)/(n+2), 1)$. The range of the real constant a is shown to be sharp.
Partial sums of Wright function

Deepak Bansal\(^1\) and Halit Orhan\(^2\)

\(^1\)Department of Mathematics, College of Engg. and Technology, Bikaner 334004, Rajasthan

\(^2\)Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey

In the present investigation, Wright function with their normalization are considered. In this paper, we will study the ratio of a normalized Wright function to its sequence of partial sums \((W_{\lambda,\mu})_n(z) = z + \sum_{k=1}^{n} \frac{\Gamma(\mu)}{\Gamma(Ak+\mu)} z^{k+1}\). We will determine lower bounds for \(\Re\left\{\frac{W_{\lambda,\mu}(z)}{(W_{\lambda,\mu})_n(z)}\right\}\), \(\Re\left\{\frac{(W_{\lambda,\mu})_n(z)}{W_{\lambda,\mu}(z)}\right\}\), \(\Re\left\{\frac{W'_{\lambda,\mu}(z)}{(W'_{\lambda,\mu})_n(z)}\right\}\), and \(\Re\left\{\frac{(W'_{\lambda,\mu})_n(z)}{W'_{\lambda,\mu}(z)}\right\}\). Results obtained are new and their usefulness are depicted by deducing several interesting examples.

Trajectory Controllability of Fractional differential Systems of Order \(\alpha \in (1, 2]\) with Deviated Argument

M. Muslim\(^1\) and Avadhesh Kumar\(^2\)

\(^1,2\)School of Basic Sciences, Indian Institute of Technology Mandi (H.P.) - 175 005, India

In this paper, we consider a control system governed by the fractional differential equation of order \(\alpha \in (1, 2]\) with deviated argument in a Banach space \(X\). We used the strongly continuous \(\alpha\)-order cosine family of linear operators and Gronwall’s inequality to study the trajectory controllability of the system. Also, we study the trajectory controllability of the integro-differential equations. Finally, we give an example to illustrate the application of these abstract results.

The existence of instantaneous gelation to the nonlinear continuous Smoluchowski coagulation equation

Prasanta Kumar Barik

Department of Mathematics, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand-247667, India

Coagulation is a kinetic process in which two particles combine together to form a bigger particle at a particular instant or time. This process has many applications in different branches of science, engineering and technology. In this work, we are mainly interested in coagulation process, which is governed by an integro-partial differential equation. This is also known as Smoluchowski coagulation equation (SCE). We know that the total mass of the system is conserved during the coagulation process. Therefore it is expected that the total volume (mass) remains constant throughout the time. However for some coagulation kernels, the total mass of the system breaks down after a finite time, this phenomenon is known as gelation. Moreover, if the gelation occurs at time \(t_g = 0\), then it is called instantaneous gelation.

In the present work, we discuss the existence of the instantaneous gelation (in weak sense) on a weighted \(L^1\) space to the general continuous SCE for large classes of unbounded coagulation kernels. The proof is based on the assumption that the mass conservation property of the solution holds for a finite time interval which leads to the finiteness of higher moments. However, a contradiction is obtained by observing the blow up of higher moments within an infinitesimal time interval.
References

A discontinuous finite volume approximation for the optimal control of the Brinkman equations

Sarvesh Kumar¹, Ricardo Ruiz-Baier² and Ruchi Sandilya³
¹,³Department of Mathematics, Indian Institute of Space and Technology, Thiruvananthapuram Kerala-695547, India
¹E-mail: sarvesh@iist.ac.in; ³E-mail: ruchisandilya.12@iist.ac.in
²Mathematical Institute, Oxford University, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
E-mail: ruiribbaier@maths.ox.ac.uk

In this paper we discuss a discontinuous finite volume discretization for the distributed optimal control problem governed by the Brinkman equations written in terms of velocity and pressure. A priori error estimates are developed for different types of control discretizations (piecewise linear, piecewise constant and variational discretization) in suitable norms. Finally, we provide a set of numerical examples illustrating the performance of the method and confirming the predicted accuracy of the state, co-state and control approximations under various scenarios.
Author Index

Abukabar
 Auwal Bala, 27
Aktaş
 Ibrahim, 32
Ali
 Rosihan M., 7
 Md Firoz, 44
 S.Ahmad, 24
Allu
 Vasudevarao, 35
Andraus
 Sergio, 14
Arora
 Shelly, 64
 Urvashi, 42
Arti, 56
Aserkar
 Anushri A., 58
Balaji
 S., 65
Balasubramanian
 R, 3
 Sriram, 24
Banasik
 Jacek, 10
Bansal
 Deepak, 66
Baricz
 Árpád, 9
Barik
 Prasanta, 66
Behera
 Kiran Kumar, 46
 Ratikanta, 23
Beig
 Subzar Ahmad, 51
Benniche
 Omar, 27

Bhattacharya
 B., 31
Bhowmik
 Bappaditya, 27
Bohra
 Nisha, 45
Borgohain
 D., 39
Bulboacă
 Teodor, 12
Charak
 K.S., 25
Chaudhary
 Renu, 41
Chawla
 Sheetal, 64
Chihara
 T.S., 13
Clarkson
 Peter, 8
Das
 Nilima, 44
 Sourav, 45
Deepika, 39
Dhanalakshmi
 K., 43
Dorff
 Michael, 11
Gómez-Ullate
 David, 9
Ghosh
 Nirupam, 45
Giri
 Ratan Kr, 59
Gochhayat
 P., 55
Gorai
 Sushil, 17
Gorty
 V.R.Lakshmi, 40
Gowda
 G.D.Veerappa, 16
Griffin
 James, 20
Gupta
 Dilip Kumar, 60
Haloi
 Rajib, 64
Hiwarekar
 A.P., 61
Ismail
 Mourad E.H., 7
Jaiswal
 J.P., 29
Jana
 Ajoy, 38
 Ranjan Kumar, 31
Janakiraman
 S., 22
Jordaan
 Kerstin, 11
Joshi
 S.B., 25
Kanas
 Stanisława, 12
Karad
 Nijjwal, 37
Karp
 Dmitrii, 14
Kavita
 D., 43
Kesavan
 S., 7
Khan
 Subuhi, 26
Khattar
 Kanika, 54
Kosuru
 G.Sankara Raju, 24
Kowalski
 Marek A., 21
Krishnan
 Venky, 26
Kumar
 P. Santhosh, 61
 Abhimanu, 38
 Avadhesh, 66
 Hemant, 58
 Himanshu, 41
 M.Subrata, 65
 Raj, 65
 Romesh, 25
 Sudhanshu, 52
 Sushil, 52
 V.Srinivasa, 51
 Vivek, 63
Kurmayya
 T., 23
Majee
 Prashanta, 46
Marcell’an
 Francisco, 5
Maurya
 P.K., 47
Mishra
 Debasis, 28
 Vikas Kumar, 57
Mohammad
 Hassan, 34
Mohan
 Manil T., 19
Mohapatra
 R.N., 6
Muhanna
 Yusuf Abu, 15
Nair
 M.T., 16
Nandakumar
 A.K., 16
Oste
 Roy, 20
Pany
 Gayatri, 61
Parmar
 Rakesh K., 47
Pathak
 A.L., 63
Pedersen
<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henrik L.</td>
<td>10</td>
</tr>
<tr>
<td>Ponnusamy</td>
<td>4</td>
</tr>
<tr>
<td>Raghavendar</td>
<td>56</td>
</tr>
<tr>
<td>Rajbangshi</td>
<td>47</td>
</tr>
<tr>
<td>Ramesh</td>
<td>24</td>
</tr>
<tr>
<td>Rana</td>
<td>32</td>
</tr>
<tr>
<td>Rao</td>
<td>54</td>
</tr>
<tr>
<td>Reddy</td>
<td>43</td>
</tr>
<tr>
<td>Sadhu</td>
<td>48</td>
</tr>
<tr>
<td>Sahi</td>
<td>6</td>
</tr>
<tr>
<td>Sampath</td>
<td>26</td>
</tr>
<tr>
<td>Sampath</td>
<td>53</td>
</tr>
<tr>
<td>Sandilya</td>
<td>67</td>
</tr>
<tr>
<td>Sangal</td>
<td>50</td>
</tr>
<tr>
<td>Sarkar</td>
<td>17</td>
</tr>
<tr>
<td>Satpati</td>
<td>40</td>
</tr>
<tr>
<td>Sebastian</td>
<td>40</td>
</tr>
<tr>
<td>Sharma</td>
<td>37</td>
</tr>
<tr>
<td>Shukla</td>
<td>31</td>
</tr>
<tr>
<td>Singh</td>
<td>42</td>
</tr>
<tr>
<td>Singh</td>
<td>46</td>
</tr>
<tr>
<td>Reshma</td>
<td>48</td>
</tr>
<tr>
<td>Sanjeev</td>
<td>49</td>
</tr>
<tr>
<td>Vikram</td>
<td>49</td>
</tr>
<tr>
<td>Sivakumar</td>
<td>15</td>
</tr>
<tr>
<td>Soma</td>
<td>58</td>
</tr>
<tr>
<td>Sosha</td>
<td>56</td>
</tr>
<tr>
<td>Soupramanien</td>
<td>57</td>
</tr>
<tr>
<td>Sri Ranga</td>
<td>5</td>
</tr>
<tr>
<td>Srivastava</td>
<td>53</td>
</tr>
<tr>
<td>Tadepalli</td>
<td>62</td>
</tr>
<tr>
<td>Thangaveli</td>
<td>5</td>
</tr>
<tr>
<td>Tiwari</td>
<td>48</td>
</tr>
<tr>
<td>Toklu</td>
<td>33</td>
</tr>
<tr>
<td>Upadhyay</td>
<td>29</td>
</tr>
<tr>
<td>Usha</td>
<td>62</td>
</tr>
<tr>
<td>Van Assche</td>
<td>1</td>
</tr>
<tr>
<td>Vashisth</td>
<td>44</td>
</tr>
<tr>
<td>Veeramani</td>
<td>53</td>
</tr>
<tr>
<td>Verma</td>
<td>50</td>
</tr>
<tr>
<td>Vetrivel</td>
<td>15</td>
</tr>
<tr>
<td>Yağmur</td>
<td>33</td>
</tr>
</tbody>
</table>

71