

विनम्र निवेदन

- 1. 'मंथन' में प्रकाशन हेतु भेजे जाने वाले लेख टाइप किए हुए अथवा स्पष्ट रूप से हाथ से लिखे हुए होने चाहिए। साथ में लेखक का पूरा नाम, पद, पता व फोन नं. आदि का स्पष्ट उल्लेख भी आवश्यक है।
- 2. लेख का विषय, इंजीनियरी, विज्ञान, चिकित्सा, मानविकी या राजभाषा (हिंदी) से संबंधित हो सकता है। सामान्यत: साहित्यिक सामग्री का प्रकाशन 'मंथन' में नहीं किया जाता है।
- 3. लेख मौलिक, विचारपूर्ण तथा अप्रकाशित होना चाहिए।
- 4. लेख की भाषा सरल एवं स्पष्ट हो।
- 5. यथासंभव लेख में फोटो, रेखाचित्र एवं आँकड़े आदि दिए जा सकते हैं, जिनका प्रामाणिक/प्रमाणित होना आवश्यक है।
- 6. 'मंथन' में प्रकाशित सर्वश्रेष्ठ तीन लेखों को प्रमाणपत्र एवं पुरस्कार प्रदान किया जाता है।
- 7. 'मंथन' के अगले अंक में प्रकाशन हेतु लेख 30 नवम्बर तक भेजे जा सकते हैं।
- 8. पत्रिका में छपे लेखों के संबंध में पाठकों की प्रतिक्रिया तथा सुझावों को समुचित महत्व दिया जाता है।

प्रत्येक लेख के साथ लेखक/लेखकों को उसके मौलिक एवं अप्रकाशित होने तथा राजभाषा प्रकोष्ठ, भारतीय प्रौद्योगिकी संस्थान रुड़की को उसके किसी भी प्रकार से उपयोग करने संबंधी प्रपत्र पर हस्ताक्षर करके संलग्न करना अनिवार्य है। इसका प्रारूप निम्नवत है:

मौलिकता प्रमाण पत्र

मैं/हम प्रमाणित करते हैं कि यह लेख मेरी/हमारी मौलिक एवं अप्रकाशित रचना है। मैं/हम इसमें वर्णित तथ्यों एवं विचारों की पूरी जिम्मेदारी लेता/लेती/लेते हूँ/हैं। साथ ही, मैं/हम भारतीय प्रौद्योगिकी संस्थान रुड़की के राजभाषा प्रकोष्ठ को इसके किसी भी प्रकार से कितनी भी बार उपयोग की पूरी अनुमति देता/देती/देते हूँ/हैं।

वर्ष 4 सितम्बर 2025 से फरवरी 2026

अंक 1

संपादक आचार्य अविनाश पाराशर

संपादक मंडल

आचार्य रिव कुमार, यांत्रिक एवं औद्योगिक अभियांत्रिकी विभाग आचार्य मनोज मिश्रा, कम्प्यूटर विज्ञान एवं अभियांत्रिकी विभाग आचार्य विमल श्रीवास्तव, रासायनिक अभियांत्रिकी विभाग आचार्य धर्मेन्द्र सिंह, इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी विभाग आचार्य अखिलेश कुमार मिश्र, भौतिकी विभाग आचार्य नागेंद्र कुमार, मानविकी एवं सामाजिक विज्ञान विभाग आचार्य आशीष पाण्डेय, जल संसाधन विकास एवं प्रबंधन विभाग आचार्य रजत अग्रवाल, प्रबंध अध्ययन विभाग आचार्य अवलोकिता अग्रवाल, वास्तुकला एवं नियोजन विभाग डाॅ. मुनींद्र कुमार झा, संस्थान चिकित्सालय

प्रकाशक

राजभाषा प्रकोष्ठ भारतीय प्रौद्योगिकी संस्थान रूड़की लेखों के मौलिक एवं अप्रकाशित होने की जिम्मेदारी लेखकों की है। इस संबंध में संपादक एवं प्रकाशक किसी भी प्रकार से उत्तरदायी नहीं है।

पत्रिका में प्रकाशित रचनाओं में व्यक्त विचार लेखकों के अपने विचार हैं। प्रकाशक अथवा संपादक का सहमत होना आवश्यक नहीं है।

प्रौद्योगिकी मंथन

मुख्य पृष्ठ : नितिन पंवार

संपर्क

राजभाषा प्रकोष्ठ

भारतीय प्रौद्योगिकी संस्थान रूड़की रूड़की – 247667 (उत्तराखंड)

दूरभाष: 01332 - 284468, ई - मेल: hindicell@iitr.ac.in

मुद्रक : श्री आदिनाथ एंटरप्राइजेज़ २४०/२ पूर्वा दीन दयाल, रूड़की दूरभाष : 9927536168

भारतीय प्रौद्योगिकी संस्थान रूड़की

दृष्टि

शिक्षा में वैश्विक स्तर की उत्कृष्टता प्राप्त करना और विज्ञान तथा प्रौद्योगिकी में नवाचारी अनुसंधान के माध्यम से एक संधारणीय व न्यायसंगत समाज का निर्माण करना।

ध्येय

एक ऐसे वातावरण का सज़न करना जिससे ऐसे बौद्धिक क्षमता युक्त, नवाचारी तथा उद्यमिता युक्त वृत्तिकों का पोषण हो सके जो उद्योग के साथ सहभागिता से विज्ञान एवं प्रौद्योगिकी की वृद्धि में योगदान कर सकें तथा राष्ट्र एवं मानवता के कल्याण हेतु इसका उपयोग व विकास कर सकें।

अनुक्रमणिका —

खिलने से पहले मुरझाएं न, हमारे आंगन के फूल	- डॉ. मधुसूदन शर्मा - डॉ. सौरभ शर्मा - प्रो. अविनाश पाराशर	7
मृदा संरक्षण एवं उर्वरक क्षमता बढ़ाने में बायोचर की भूमिका	- अब्दुल रहमान - प्रो. सोनल के. ठेंगणे	16
हाइपोकाइनेटिक रोगों की जननी: गतिहीन जीवन शैली	- डॉ. आशीष यादव	18
रिट्रेक्शन और करेक्शन से ज्ञान शुद्धिकरण के साथ वैज्ञानिक विश्वसनीयता एवं अकादमिक प्रकाशन में नैतिक मूल्यों की स्थापना	- सन्तोष कुमार	22
हिंदी का ई-संसार	- डॉ. काजल पाण्डे	45
दवाओं पर उच्च तापमान का दुष्प्रभाव	- मांगे राम कुलवंशी	51
आयनकारी विकिरण का पर्यावरण पर दुष्प्रभाव	- प्रदीप कुमार बर्वे	54
जलवायु संकट में भारतीय पारंपरिक जल संरक्षण संरचनाओं का महत्व	- डॉ. अपर्णा दत्ता	61
औद्योगिक प्रक्रियाओं में रेडियोआइसोटोप का उपयोग	- संजय गोस्वामी	65
मानवीय क्रोमोसोम में जीन की संख्यात्मक कमी	- संदीप चंद उपाध्याय	76
जैविक अपशिष्ट प्रबंधन के लिए परिपत्र अर्थव्यवस्था आधारित बायोगैस संयंत्रों का सततता विश्लेषण	- पंकज गड़कोटी प्रो. सोनल के. ठेंगणे	80
क्या आपके शरीर में प्लास्टिक है ?	- दिव्येश बंसल	84

संपादक की कलम से

प्रोफेसर अविनाश पाराशर

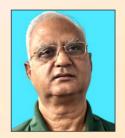
यांत्रिक एवं औद्योगिक अभियांत्रिकी विभाग एवं अध्यक्ष, राजभाषा प्रकोष्ठ भारतीय प्रौद्योगिकी संस्थान रूडकी

प्रिय पाठकों,

आज हम उस युग में हैं जहाँ तकनीक न केवल हमारी जिंदगी का अभिन्न हिस्सा बन चुकी है, बिल्क यह हमारे सोचने, सीखने और कार्य करने के तरीकों को भी निरंतर रूपांतरित कर रही है। आज जब समाज अनेक बदलावों के दौर से गुजर रहा है, तकनीकी विकास, सामाजिक जागरूकता, पर्यावरणीय संकट और मानसिक स्वास्थ्य जैसे मुद्दे हमारी सोच के केन्द्र में हैं। ऐसे समय में युवा वर्ग की भूमिका अत्यंत महत्वपूर्ण हो जाती है। यह पत्रिका इन्हीं विषयों पर हमारे विद्यार्थियों, संकाय सदस्यों एवं स्टॉफ की गहन दृष्टि, अनुभव और रचनात्मकता को सामने लाने का एक विनम्र प्रयास है।

पत्रिका के इस अंक में हम उन नवीनतम तकनीकों एवं सामाजिक मुद्दों की चर्चा कर रहे हैं, जो आने वाले भविष्य को एक नया आकार देने में समर्थ होंगी, जैसे कि देश के भविष्य अर्थात युवाओं के मानसिक स्वास्थ्य पर विचार, कृषि उर्वरता को बढ़ाने एवं जैविक अपशिष्ट प्रबंधन हेतु नई तकनीकें, स्वस्थ जीवन हेतु सक्रियता का महत्व, लेखकीय प्रथाओं हेतु मानकों का सुदृढ़ीकरण, तकनीक के सहयोग से हिंदी का बढ़ता प्रसार, दवाओं का उचित रखरखाव, पर्यावरण सुरक्षा हेतु उपाय, उद्योग एवं चिकित्सा के क्षेत्र में नवाचार, भारतीय पारंपरिक जल संरक्षण संरचनाओं का महत्व, वर्तमान समय में मानवीय जीन की स्थिति तथा प्लास्टिक से दूरी इत्यादि को स्थान दिया है, जो भारत जैसे विकासशील देश के लिए प्रासंगिक हैं और स्थानीय समस्याओं का तकनीकी समाधान प्रस्तुत करने में सक्षम हैं।

यह पत्रिका केवल तकनीकी जानकारी का स्रोत नहीं, बल्कि एक मंच है जहाँ हम सरल भाषा के माध्यम से अपने विचारों का आदान-प्रदान कर रहे हैं। हमारा उद्देश्य प्रौद्योगिकी को केवल विशेषज्ञों तक सीमित न रखकर उसे आम जनमानस तक पहुँचाना है, ताकि हर व्यक्ति इसकी शक्ति को समझे और अपने जीवन में सकारात्मक बदलाव ला सके।


आइए, हम सब मिलकर नवाचार को केवल उपभोग की वस्तु नहीं, बल्कि परिवर्तन का उपकरण बनाएं।

आपकी प्रतिक्रियाओं और सुझावों की प्रतीक्षा रहेगी।

> सादर, अविनाश पाराशर अविनाश पाराशर संपादक मंथन

सितम्बर 2025

खिलने से पहले मुरझाएं न, हमारे आंगन के फूल

डॉ. मधुसूदन शर्मा होम्योपैथी परामर्शदाता संस्थान चिकित्सालय भारतीय प्रौद्योगिकी संस्थान रूडकी

डॉ. सौरभ शर्मा भारतीय नौसेना पूर्व छात्र भारतीय प्रौद्योगिकी संस्थान रूड़की

प्रो. अविनाश पाराशर यांत्रिक एवं औद्योगिक अभि. विभाग भारतीय प्रौद्योगिकी संस्थान रूड़की

अधिष्ठानं तथा कर्ता करणं च पृथग्विधम् | विविधाश्च पृथक्चेष्टा दैवं चैवात्र पञ्चमम् || श्रीमद्भगवद्गीता 18.14||

शरीर, कर्ता, विभिन्न इन्द्रियाँ, अनेक प्रकार की चेष्टाएँ और विधि का विधान अर्थात ईश्वर -ये पाँच कर्म के कारक हैं।

1.0 परिचय

विगत कुछ दशकों में भारत वैश्विक मानचित्र पर एक आर्थिक शक्ति के रूप में उभरा है। भारत, वर्ष 2025 में दुनिया की चौथी सबसे बड़ी अर्थव्यवस्था बन गया है । अर्थशास्त्री वर्ष 2047 तक भारत को एक विकसित राष्ट्र के रूप में देख रहे हैं । इस संदर्भ में प्रतिभाशाली युवा मस्तिष्क हमारी सबसे बड़ी ताकत हैं, और आने वाले वर्षों में भारत को एक विकसित राष्ट्र और आर्थिक शक्ति बनाने में उनकी महत्वपूर्ण भूमिका होगी।

इस तथ्य के बावजूद कि भारत तेज गित से आर्थिक शक्ति के रूप में अपनी पहचान बना रहा है, फिर भी छात्रों में बढ़ते अवसाद और आत्महत्या की घटनाएं हमारे सामने एक गंभीर चुनौती है। अतः हमें अपने शिक्षा मूल्यों, पारिवारिक अपेक्षाओं, आध्यात्मिक जागरूकता और युवाओं के मानसिक स्वास्थ्य के बारे में पुनर्विचार करने आवश्यकता है।

उच्च शिक्षण संस्थानों में छात्रों के बीच अवसाद और आत्मघात की प्रवृति क्यों बढ़ रही है? क्यों अभिभावक और समाज किशोर मन की उलझन को नहीं समझ पा रहा है? किसी भी समाज में युवा नई संभावनाओं और भविष्य की उम्मीद होते हैं। कोई भी समाज उनके बिना प्रगति की राह पर नहीं चल सकता। एक युवा का असमय विछोह; परिवार, समाज व देश के लिये असहनीय टीस बन जाता है। हादसों को केवल आंकड़ों की नजर से नहीं देखा जाना चाहिए। इसकी टीस उन मां-बाप से पूछी जानी चाहिए, जिन्हें वह जीवनभर का दर्द दे जाती है। किसी भी युवा को भले ही, आत्मघात समस्या से पार पाने का सरल रास्ता नजर आता हो, लेकिन इसकी कीमत परिवार-रिश्तेदार व समाज ताउम्र चुकाता है।

गत वर्ष जारी राष्ट्रीय अपराध रिकॉर्ड ब्यूरो की एक रिपोर्ट हमें विचलित करती है। इस रिपोर्ट में बताया गया है कि पिछले एक दशक के दौरान देश में आत्महत्या करने वाले छात्रों की संख्या 70 फीसदी बढ़ी है ³³। जहां वर्ष 2011 में करीब साढ़े सात हजार छात्रों ने आत्महत्या की थी, वहीं वर्ष 2021 में आत्मघाती कदम उठाने वाले छात्रों का आंकड़ा तेरह हजार से अधिक हो गया है। निस्संदेह, यह दुखद है कि कुछ फूल खिलने से पहले ही सदा-सदा के लिए मुरझा जाते हैं।

दरअसल इस समस्या का आरंभ प्रतियोगी परीक्षाओं में गला-काट स्पर्धा से शुरू होता है। अभिभावकों को यह समझना चाहिए कि हर बच्चा अपने आप में विशिष्ट होता है, उसकी यही विशिष्टता उसके भविष्य में सफलता की कुंजी होती है। अपनी रुचि के विषयों में छात्र उत्कृष्ट प्रदर्शन करने में सफल होते हैं। भारत के पूर्व राष्ट्रपति और डीआरडीओ के एक प्रतिष्ठित वैज्ञानिक, डॉ. ए.पी.जे. अब्दुल कलाम ने विज्ञान, प्रौद्योगिकी और शिक्षा के क्षेत्र में अपने उल्लेखनीय योगदान से देश को गौरवान्वित किया। इसी प्रकार, हमारे वर्तमान प्रधानमंत्री, माननीय श्री नरेंद्र मोदी जी ने भी अपने अथक प्रयासों और समर्पण से विभिन्न अंतरराष्ट्रीय मंचों पर भारत का गौरव बढाया है। उनकी यात्राएँ दर्शाती हैं कि सच्ची सफलता कड़ी मेहनत, प्रतिबद्धता और अपनी रुचियों एवं क्षमताओं के प्रति सच्चे रहने से मिलती है। ये उदाहरण हमें सफलता की दौड़ में केवल दूसरों का अनुसरण डॉ. ए.पी.जे. अब्दुल कलाम ने विज्ञान, प्रौद्योगिकी और शिक्षा के क्षेत्र में अपने उल्लेखनीय योगदान से देश को गौरवान्वित किया। इसी प्रकार, हमारे वर्तमान प्रधानमंत्री, माननीय श्री नरेंद्र मोदी जी ने भी अपने अथक प्रयासों और समर्पण से विभिन्न अंतरराष्ट्रीय मंचों पर भारत का गौरव बढ़ाया है

करने के बजाय, अपनी क्षमताओं और आकांक्षाओं के अनुरूप करियर बनाने पर ध्यान केंद्रित करने के लिए प्रोत्साहित करते हैं।

इस लेख में प्रतियोगी परीक्षाओं की तैयारी कर रहे युवाओं के बिगड़ते मानसिक स्वास्थ्य से जुड़े कारणों, साथ ही उन उपायों पर भी चर्चा की गई है जो अवसाद और खराब मानसिक स्वास्थ्य के लिए उपाय के रूप में सुझाए जा सकते हैं।

2.0 छात्रों में अवसाद के मुख्य कारण

छात्रों में अवसाद के बढ़ते मामलों से जुड़े मुख्य कारणों को निम्नलिखित तीन उपवर्गों में वर्गीकृत किया जा सकता है।

2.1 माता-पिता की अपेक्षाएँ

प्रत्येक माता-पिता अपने बच्चों से सदैव उच्च अपेक्षाएं करते हैं। वे अपने बच्चों से 10 साल की उम्र से ही मेडिकल एवं आईआईटी जेईई को करियर के रूप में अपनाने की बातें करना शुरू कर देते हैं। फलस्वरूप, कुछ बच्चे 11 साल की उम्र में प्राथमिक शिक्षा पूरी करने के बाद कोचिंग संस्थानों में प्रवेश ले लेते हैं। माता-पिता अपने बच्चों के पहले शिक्षक होते हैं। इस तथ्य के बावजूद कि प्रत्येक बच्चे में अपनी विशिष्ट प्रतिभा होती है, फिर भी अधिकतर माता-पिता विशेष रुप से दो क्षेत्रों, मेडिकल और आईआईटी जेईई में ही अपने बच्चे के करियर निर्माण का सपना देखते हैं। अपने छात्र जीवन में शायद यही सपना उन्होंने स्वयं के लिए भी देखा था। अब वे अपने बच्चों की मदद से अपने इन सपनों को जीवंत करना चाहते हैं। हाल ही में आई एक फिल्म '12th फेल' समाज को एक अच्छा संदेश देती है कि एक बच्चा जिसने 10वीं कक्षा में तीसरी श्रेणी प्राप्त की है और 12वीं कक्षा में एक बार फेल हुआ है, वह भी प्रतिष्ठित युपीएससी में चयनित हो सकता है और भारतीय पुलिस सेवा अधिकारी श्री मनोज कुमार शर्मा बन सकता है। उनकी सफलता का कारण न केवल उनकी कडी मेहनत है, बल्कि माता-पिता की कोई आकांक्षा का न होना भी है। उन्होंने कभी मेडिकल और आईआईटी जेईई के लिए प्रयास नहीं किया, फिर भी वह अपने जीवन में एक सफल व्यक्ति हैं।

प्रधानमंत्री श्री नरेन्द्र मोदी जी ने सोमवार 22 जनवरी, 2024 को सातवें 'परीक्षा पे चर्चा' कार्यक्रम में विद्यार्थियों से बातचीत करते हुए उन्हें " अपने साथियों से नहीं बल्कि स्वयं से प्रतिस्पर्धा करने" के लिए प्रेरित किया और अभिभावकों से आग्रह किया कि वे अपने बच्चों के रिपोर्ट कार्ड को अपना विजिटिंग कार्ड न समझें बि। उन्होंने कहा- "कुछ लोग अपने यार दोस्तों के बीच या फैमिली फंक्शन में या सोशल फंक्शन में जाते हैं, तो अपने बच्चे का रिपोर्ट कार्ड अपना विजिटिंग कार्ड बनाकर ले जाते हैं।" कार्यक्रम में प्रधानमंत्री ने मातापिता से आग्रह किया कि वे अपने बच्चों की उपलब्धियों को अपनी सामाजिक पहचान का माध्यम न बनाएं।

संघ लोक सेवा आयोग (upsc) द्वारा आयोजित भारतीय प्रशासनिक सेवा देश की सबसे कठिन परीक्षा है, जबकि आईआईटी जेईई एडवांस वे अपने बच्चों की मदद से अपने इन सपनों को जीवंत करना चाहते हैं। हाल ही में आई एक फिल्म '12th फेल' समाज को एक अच्छा संदेश देती है कि एक बच्चा जिसने 10वीं कक्षा में तीसरी श्रेणी प्राप्त की है और 12वीं कक्षा में एक बार फेल हुआ है, वह भी प्रतिष्ठित यूपीएससी में चयनित हो सकता है और भारतीय पुलिस सेवा अधिकारी श्री मनोज कुमार शर्मा बन सकता है। उनकी सफलता का कारण न केवल उनकी कड़ी मेहनत है, बल्कि माता-पिता की कोई आकांक्षा का न होना भी है

इसके बाद आती है। वर्ष 2024 में, आईएएस परीक्षा के लिए सफलता दर मात्र 0.17% है ^[5], जबिक आईआईटी जेईई एडवांस में योग्य अभ्यर्थियों के लिए यह दर 3.84% है ^[6]। यहाँ यह देखना महत्वपूर्ण है कि कम सफलता दर के बावजूद, आईएएस अभ्यार्थियों में अवसाद और आत्महत्या के मामले आईआईटी जेईई अभ्यर्थियों की तुलना में बहुत कम हैं। कारण है, आईएएस में शामिल होने वाले अभ्यर्थी मानसिक रूप से आईआईटी / जेईई की तुलना में अधिक परिपक होते हैं। इसके अतिरिक्त, आईआईटी जेईई अभ्यर्थी एक तरफ तो वयस्क नहीं होते हैं; ऊपर से वे अपने माता-पिता की आकांक्षाओं का बोझ भी उठा रहे होते हैं। इसके विपरीत आईएएस अभ्यर्थी दबाव की स्थित को संभालने के लिए

पर्याप्त परिपक्व होते हैं। हम आधुनिक समय के माता-पिता को यह बताना चाहते हैं कि डॉ. ए.पी.जे. अब्दुल कलाम के पिता एक नाव चलाते थे और स्थानीय मिल्जद में इमाम थे। श्री सिचन तेंदुलकर के पिता एक मराठी साहित्यकार और किव थे। प्रधानमंत्री श्री नरेंद्र मोदी जी के पिता रेलवे स्टेशन पर एक स्थानीय चाय विक्रेता थे। इन उदाहरणों से स्पष्ट है कि बच्चों की सफलता माता-पिता की आर्थिक व शैक्षिक पृष्ठभूमि से तय नहीं होती, बिल्क उनके साथ सहयोग करने और स्वतंत्रता का वातावरण देने से तय होती है। यह सभी माता-पिता के लिए एक संदेश है कि वे अपने बच्चों को स्वतंत्र वातावरण दे और उन्हें अपने सपनों की उड़ान भरने दें।

2.2 कोचिंग संस्थानों में प्रतिस्पर्धा

कोचिंग ले रहे संभावनाशील छात्रों में अवसाद और आत्मघाती व्यवहार की खबरें अक्सर राजस्थान के कोटा शहर से आती हैं। जहां शेष भारत से लाखों छात्र-छात्राएं सुनहरे सपने लेकर प्रतियोगी परीक्षाओं की तैयारी के लिये आते हैं। मन के अनुकुल वातावरण न पाकर और भविष्य की अनिश्चितताओं से घिरे कुछ छात्र मौत को गले लगाने को अंतिम विकल्प के रूप में देखने लगते हैं। कहीं न कहीं अपने परिजनों की उम्मीदों का बोझ ढोते ये छात्र इस बात से भयभीत होते हैं कि अपने मध्यम व निम्न मध्यवर्गीय परिवारों के लाखों रुपए के खर्च के साथ क्या वे न्याय कर पाएंगे? नीट और जेईई के लिए कोचिंग संस्थानों का माहौल अत्यधिक प्रतिस्पर्धात्मक होता है, और प्रतियोगी परीक्षाओं की तैयारी करने वाले छात्र अत्यधिक प्रतिस्पर्धी परीक्षा परिदृश्य के कारण तनावग्रस्त रहते हैं। पिछले कुछ वर्षों में कोचिंग संस्थानों का कारोबार फलने-फूलने लगा है, और उन्होंने इस भ्रामक धारणा को बल दिया है कि आईआईटी जेईई परीक्षाएँ केवल भारतीय प्रौद्योगिकी संस्थानों

मन के अनुकूल वातावरण न पाकर और भविष्य की अनिश्चितताओं से घिरे कुछ छात्र मौत को गले लगाने को अंतिम विकल्प के रूप में देखने लगते हैं। कहीं न कहीं अपने परिजनों की उम्मीदों का बोझ ढोते ये छात्र इस बात से भयभीत होते हैं कि अपने मध्यम व निम्न मध्यवर्गीय परिवारों के लाखों रुपए के खर्च के साथ क्या वे न्याय कर पाएंगे? नीट और जेईई के लिए कोचिंग संस्थानों का माहौल अत्यधिक प्रतिस्पर्धात्मक होता है, और प्रतियोगी परीक्षाओं की तैयारी करने वाले छात्र अत्यधिक प्रतिस्पर्धी परीक्षा परिदृश्य के कारण तनावग्रस्त रहते हैं।

के लिए हैं, और कोई अन्य तकनीकी संस्थान उनके आस-पास भी नहीं हैं। ये कोचिंग संस्थान अपनी सफलता का मापदंड आईआईटी में चयनित संख्या को मानते हैं और उसी का प्रचार-प्रसार भी करते हैं। अभिभावक भी सीट पाने वाले छात्रों की संख्या के आधार पर सफलता का अनुमान लगाना शुरू कर देते हैं। जबिक हकीकत में एनआईटीज, बिट्स पिलानी और आईईईई जैसे कई अन्य तकनीकी संस्थान शिक्षा की गुणवत्ता और उत्कृष्ट स्थानन में समान रूप से अच्छे हैं। आईआईटी के प्रति इस जुनून ने प्रत्येक कोचिंग संस्थान में प्रतिस्पर्धा का माहौल उत्पन्न कर दिया है। ये कोचिंग संस्थान आंतरिक परीक्षाओं में प्रदर्शन के आधार पर छात्रों को विभिन्न बैचों में बाँट देते हैं। यहाँ से छात्रों के बीच प्रतिदिन शीर्ष रैंक हासिल करने के लिए नहीं बल्कि कोचिंग संस्थान के टॉप बैच में आने के लिए प्रतिस्पर्धा शुरू हो जाती है। जिन छात्रों को टॉप बैच में सीट नहीं मिलती, वे मुख्य आईआईटी जेईई परीक्षा में बैठने से पहले ही निराश या उदास हो जाते हैं। कोचिंग संस्थानों में यह बैच सिस्टम अधिकांश छात्रों के मानसिक स्वास्थ्य को नकारात्मक रूप से प्रभावित करता है, और उनमें से कुछ वास्तविक परीक्षा देने से पहले ही मानसिक रूप से हार मान लेते हैं। यह हमारी शैक्षिक प्रणाली और समाज का सामृहिक दायित्व है कि हम छात्रों और अभिभावकों को जेईई परीक्षाओं के व्यापक पहलुओं के बारे में शिक्षित करें और इसे केवल कुछ आईआईटीज तक सीमित न रखें।

ये कोचिंग संस्थान आंतरिक परीक्षाओं में प्रदर्शन के आधार पर छात्रों को विभिन्न बैचों में बाँट देते हैं। यहाँ से छात्रों के बीच प्रतिदिन शीर्ष रैंक हासिल करने के लिए नहीं बल्कि कोचिंग संस्थान के टॉप बैच में आने के लिए प्रतिस्पर्धा शुरू हो जाती है। जिन छात्रों को टॉप बैच में सीट नहीं मिलती, वे मुख्य आईआईटी जेईई परीक्षा में बैठने से पहले ही निराश या उदास हो जाते हैं

2.3 रूचि बने राह तो राह बने मंजिल

वास्तव में चिंता तब और गहरी हो जाती है, जब कोई छात्र आईआईटी, एम्स, एनआईटी में प्रवेश पाने के बाद भी उदास हो जाता है या कभी-कभी अपना जीवन समाप्त कर लेता है। इस तथ्य के बावजूद कि 2020 में भारत सरकार द्वारा प्रस्तुत की गई नई राष्ट्रीय शिक्षा नीति समग्र और बहु-विषयक शिक्षा पर केंद्रित है और छात्रों के लिए अपने करियर विकल्पों को चुनने में अधिक लचीली है। इसके बावजूद छात्र अभी भी उदास एवं परेशान हो रहे हैं और कभी-कभी प्रमुख <mark>संस्थानों से आत्महत्या</mark> की खबरें सामने आ रही हैं। <mark>अक्सर परिवार</mark> की अनुपस्थिति में तनावपूर्ण परिस्थितियों का सामना करना भी छात्रों के लिए चुनौतीपूर्ण होता है। छात्रों का अपनी पसंद के प्रमुख संस्थानों में प्रवेश पाना सफलता की ओर पहला कदम है, परंतु अंतिम पडाव नहीं। कोई भी सीजीपीए या अंकतालिका किसी भी छात्र की सफलता की कहानी को पूर्ण परिभाषित नहीं कर सकती है, यह उनका सतत प्रयास है जो उनकी शर्तों में सफलता को फिर से परिभाषित करता है।

तात्पर्य यह है कि आईआईटी छोड़ने वालों ने भी अपने जीवन में असाधारण रूप से अच्छा प्रदर्शन किया है। इससे यह स्पष्ट होता है कि किसी भी व्यक्ति के जीवन में सफलता की कुंजी संस्थान नहीं बल्कि रुचि और दृढ़ संकल्प है। श्री मुकेश अंबानी, अध्यक्ष रिलायंस इंडस्ट्रीज ने केमिकल टेक्नोलॉजी में अपना करियर बनाने के उद्देश्य से आईआईटी को छोड़ दिया था। इसी क्रम में, लेफ्टिनेंट जनरल ए. अरुण जो भारतीय सेना में 39 साल की शानदार कमीशन सेवा के साथ एक उच्च पदस्थ सैन्य अधिकारी और विद्वान हैं। उन्होंने आईआईटी प्रवेश परीक्षा में 13वां स्थान प्राप्त किया और बी.टेक. पाठ्यक्रम के लिए

आईआईटी मद्रास में प्रवेश लिया, हालांकि उन्होंने सशस्त्र सेवाओं में अपने सपने को पूरा करने के लिए आईआईटी को छोड़ दिया। इससे पता चलता है कि कोई भी संस्थान आपका करियर तब तक नहीं बना सकता जब तक कि आप कड़ी मेहनत नकरें और अपनी रुचि विकसित नकरें।

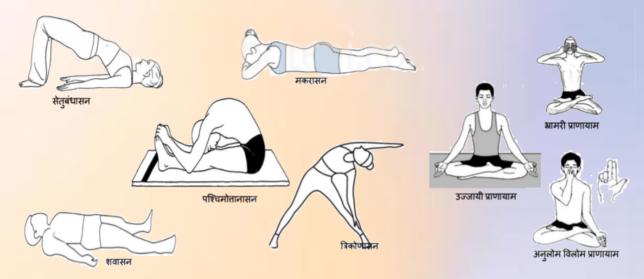
3.0 अवसाद से लड़ने के उपाय

हर समस्या का कोई न कोई समाधान अवश्य होता है, बस हमें अपने जीवन में आने वाली चुनौतियों से निपटने के लिए धैर्य और अपने दृष्टिकोण में थोड़ा बदलाव करने की आवश्यकता होती है।

3.1 मानसिक तनाव से उबरने में योग की भूमिका

प्रमुख अवसाद विकार (MDD) मानसिक विकारों में सबसे आम है। इस विकार में अवसाद के लक्षण बहुत गंभीर होते हैं। विश्व स्वास्थ्य संगठन का अनुमान है कि 2030 तक,यह विकार दुनिया भर में बीमारी के बोझ (global disease burden) का प्रमुख कारण बन सकता है।

मानसिक स्वास्थ्य के इस गंभीर खतरे से निपटने के लिए जहाँ चिकित्सा विज्ञान औषधियों और परामर्श के माध्यम से प्रयासरत है, वहीं पारंपरिक जीवन शैली की पद्धतियां विशेष रूप से योग मानसिक स्वास्थ्य में महत्वपूर्ण भूमिका निभा सकता है।


योग – प्राचीन भारतीय विज्ञान - "चित्त वृत्ति निरोध" के सिद्धांत पर आधारित है जो मन के विक्षेपों को शांत करता है। योग शरीर और मन के संतुलित अभ्यास का एक समग्र मॉडल है। जिसमें विभिन्न शारीरिक मुद्राएँ जैसे गति, श्वास नियंत्रण तकनीक, विश्राम, चेतना और ध्यान शामिल हैं। हाल के वर्षों में मानसिक रोगों के उपचार में आधुनिक चिकित्सा समुदाय ने भी योग के महत्व

को स्वीकार किया है, और इसके उत्कृष्ट योगदान को सराहा है।

योग के अभ्यास से मनोदशा में सुधार होता है और अवसाद के लक्षणों में कमी आती है। यह परानकंपी (पैरासिम्पेथेटिक) तंत्रिका तंत्र को सक्रिय करके चिंता, क्रोध और तनाव जैसी नकारात्मक भावनाओं को नियंत्रित करता है। हमारे शरीर में विभिन्न अंतःस्रावी ग्रंथियाँ जैसे, पीनियल, थाइरॉइड, पैराथाइरॉइड और एड्रेनल हार्मीन स्रावित करती हैं जो हमारे शारीरिक और मानसिक कार्यों को विनियमित करने के लिए जिम्मेदार होती हैं। इन ग्रन्थियों से स्रावित हॉर्मोन हमारे मुड, तनाव प्रतिक्रियाओं और सामान्य रूप से निर्मित प्रतिरक्षा पर सकारात्मक प्रभाव डालता हैं। योग, इन अंतःस्रावी ग्रंथियों के स्राव को विनियमित करने में प्रभावी और सकारात्मक रूप से मदद कर सकता है और इस प्रकार अवसाद के लक्षणों में कमी लाने में योगदान दे सकता है।

सेतुबंधासन, पश्चिमोत्तानासन, ताड़ासन, विकोणासन, शवासन, मकरासन जैसी योग क्रियाएं सेरोटोनिन एवं एंडोर्फिन हॉर्मोन के स्नाव में सहायक होती हैं, और अवसाद को दूर करने में मदद करती हैं। योग के श्वास अभ्यास- भ्रामरी प्राणायाम, अनुलोम-विलोम प्राणायाम, उज्जायी प्राणायाम और ध्यान, मन को शांत करने और तनाव को कम करने में मदद करते हैं, साथ ही अवसाद को दूर करने में एक महत्वपूर्ण कारक हो सकते हैं।

इन आसनों के साथ-साथ सात्विक प्रकृति के योगिक आहार, पर्याप्त विश्राम तथा परिवार और मित्रों का सानिध्य एवं स्नेह मिलने से अवसाद के लक्षणों वाले रोगियों में सकारात्मक परिणाम देखने को मिलते हैं।

चित्र 1: योगासन और प्राणायाम [9]

प्रतियोगी छात्रों के तनाव को कम करने या छात्रों को मानसिक रूप से मजबूत बनाने में माता-पिता की भूमिका महत्वपूर्ण होती है। माता-पिता को अपने बच्चे की क्षमताओं, रुचियों और कमजोरियों को समझना होगा। फिर उसी के अनुसार उन्हें आगे बढ़ने के लिए प्रेरित करना चाहिए। जहां तक सफलता में कोचिंग संस्थानो की भूमिका का प्रश्न है, तो वे परीक्षा की रणनीति बनाने और तैयारी करने में तो मददगार हो सकते हैं. पर किसी भी छात्र को प्रमुख संस्थान में प्रवेश की गारंटी नहीं दे सकते हैं। भारत एक उभरती हुई अर्थव्यवस्था है। अब विभिन्न क्षेत्रों में करियर की नई राहें खुल रही हैं। प्रमुख संस्थानों में प्रवेश का सपना साकार करने के लिए आंखें बंद कर उनके पीछे भागने के बजाय अभिभावकों को अपने बच्चों की ताकत और कमजोरी का आंकलन करना होगा। प्रतियोगी परीक्षा की तैयारी में जुटे छात्रों के तनावपूर्ण जीवन में माता पिता की भूमिका केवल मार्गदर्शक की ही नहीं, बल्कि मानसिक संबल प्रदान करने वाले मित्र के रूप में भी हो सकती है। माता-पिता को यह समझना चाहिए कि हर बच्चा

अपनी विशिष्ट योग्यताओं और क्षमताओं के साथ अद्वितीय होता है। इसलिए हर बच्चे की सोच और सफलता का मार्ग एक जैसा नहीं हो सकता।

3.3

शिक्षक चाहे वे स्कूल, कॉलेज, कोचिंग संस्थानों या तकनीकी संस्थानों से जुड़े हों, वे छात्रों को प्रतियोगी परीक्षाओं की तैयारी में आने वाली चुनौतियों से निपटने या शिक्षण की भाषा में बदलाव के कारण होने वाली समस्याओं से निपटने में महत्वपूर्ण योगदान दे सकते हैं। हम भारतीय गुरुकुल परंपरा में विश्वास करते हैं। हम भारतीय गुरुकुल परंपरा में विश्वास करते हैं। शिक्षक कक्षाओं के साथ एक बंधन साझा करते हैं। शिक्षक कक्षाओं के भीतर और बाहर एक सकारात्मक और सहयोगात्मक वातावरण बनाकर छात्रों के तनाव के स्तर को कम करने में मदद कर सकते हैं। शिक्षकों के सहयोग से छात्रों में तनाव के स्तर को कम करने के लिए शोधकर्ताओं द्वारा प्रस्तावित तरीकों का सारांश तालिका 1 में दिया गया है:

तालिका 1: छात्रों के तनाव और चिंता को कम करने के लिए प्रशिक्षकों द्वारा अपनाई जा सकने वाली रणनीतियों का सारांश¹⁸:

क्रम सं.		
1	प्रभावी शैक्षणिक कौशल को बढ़ावा देना।	छात्रों में कुशल अध्ययन की आदतें और समय प्रबंधन कौशल विकसित करना
2	छात्रों की परीक्षा की आवृत्ति को न्यूनतम करना।	 परीक्षाओं की आवृत्ति कम करें। व्याख्यानों को अधिक रोचक बनाएं तथा विद्यार्थियों को संदेह उठाने के लिए प्रेरित करें।
3	व्याख्यान कक्षों में सशक्त वातावरण का निर्माण करना।	 चिंता को कम करने के लिए सक्रिय शिक्षण कौशल को अनुमित दें। छात्रों को परियोजनाओं के लिए अपने स्वयं के समूह बनाने की अनुमित दें। सभी छात्रों के साथ समान व्यवहार किया जाना चाहिएए चाहे उन्हें कितने भी अंक मिले हों।
4	छात्रों के साथ व्यक्तिगत स्तर पर जुड़ना।	 विद्यार्थियों के नाम याद रखें। रूढ़िवादी शिक्षण को तोड़ने के लिए व्याख्यानों में हास्य का प्रयोग करेंए तथा लंबे सत्रों के दौरान छात्रों का ध्यान पुनः व्याख्यान पर केन्द्रित करें।

3.4 आध्यात्मिक शांति

छात्रों की मानसिक चिंता एवं तनाव को कम करने के लिए केवल शैक्षणिक और मनोवैज्ञानिक उपाय ही पर्याप्त नहीं है, इसके लिए आध्यात्मिक शांति भी आवश्यक है। मानव इतिहास में ज्ञात शिक्षक भगवान श्रीकृष्ण हैं, और उन्होंने स्वयं युद्ध के मैदान में अपने मित्र और शिष्य अर्जुन को उपदेश दिए थे। ये उपदेश आज भी जीवन के हर क्षेत्र में प्रासंगिक हैं।

हालाँकि हममें से बहुत से लोग संस्कृत भाषा से भली-भांति परिचित नहीं हैं, फिर भी आरंभ में दिए

गए भगवद्गीता के श्लोक 18.14 को समझने का प्रयास करते हैं। इस लेख का सार भगवद्गीता के इसी श्लोक में है।

अधिष्ठानं तथा कर्ता करणं च पृथग्विधम् | विविधाश्च पृथक्वेष्टा दैवं चैवात्र पञ्चमम् || श्रीमद्भगवद्गीता 18.14||

इस श्लोक में निहित संदेश किसी भी कार्य में सफलता पाने के लिए आवश्यक पाँच तत्वों के बारे में है। सबसे पहले कार्य करने का स्थान, कर्ता, कार्य करने के साधन, क्षेत्र के विभिन्न प्रयास या ज्ञान, और अंत में भगवान का आशीर्वाद। परंतु मनुष्य अक्सर ही पहले चार तत्वों में अपना सर्वश्रेष्ठ देने की बजाय पाँचवे तत्व की कमी को लेकर अधिक चिन्तित रहता है और यही सोच उसे अवसाद और चिंता की ओर ले जाती है। संदेश स्पष्ट है कि हमें ईश्वर का आशीर्वाद पाने के लिए उचित प्रयास, ज्ञान और क्षेत्र में रुचि की आवश्यकता है, हम उचित प्रयास किए बिना किसी भी असफलता के लिए ईश्वर को दोष नहीं दे सकते हैं।

4.0 निष्कर्ष

छात्रों की जीवन यात्रा में तनाव अवसाद या फिर आत्महत्या की घटनाएं अत्यंत चिंताजनक है। इन दुर्भाग्यपूर्ण घटनाओं के लिए केवल छात्रों को ही जिम्मेदार नहीं ठहराया जा सकता। यह हमारी सामूहिक विफलता है कि जिन बच्चों को सपनों की उड़ान भरनी थी, वे जीवन से ही हार बैठे। आत्म बोध, रुचि के अनुसार शिक्षा, योग और आध्यात्मिक अभ्यास-ये सब मिलकर छात्रों के एक ऐसे सुनहरे भविष्य की नींव रख सकते है, जहाँ फूल खिलने से पहले मुरझाएं नहीं, बल्कि स्वयं अपने तथा अपने परिवार, समाज और राष्ट्र को समृद्ध कर सकें।

ग्रंथ सूची

- [1] https://www.news18.com/business/economy/india-becomes-4th-largest-economy-how-far-is-the-no-1-spot-a-look-at-top-three-gdps-ws-kl-9351758.html,June 6th, 2025, 9:00 PM.
- [2] https://www.newsonair.gov.in/pmnarendra-modi-spells-outblueprint-to-transform-india-into-

- developed-nation-by-2047/, June 6th, 2025, 9:30 PM.
- [3]https://theprint.in/opinion/neet-jee-exams-are-causing-a-mental-health-crisis-in-india-students-are-struggling-to-cope/2158249/ June 4th, 2025, 12:30 PM.
- [4] https://indianexpress.com/article/education/parents-should-not-treat-childs-report-card-as-visiting-card-says-pm-modi-9133729/ June 5th, 2025, tiem 8:30 PM.
- [5] www.pib.gov.in/PressReleasepage.a spx?PRID=2123422#:~:text=Highlig hts%20of%20the%20result%20are,a ctually%20appeared%20in%20the% 20examination,
- [6] https://jeemain.nta.ac.in/ images/press-release-for-therelease-of-rank-and-nta-scores-forjee-main-2024-session-2-dated-24-april-2024.pdf, June 6th, 2024 9AM.
- [7] https://zeenews.india.com/ education/meet-lt-general-a-arunscholar-who-chose-nda-over-iitmadras-with-air-13-2677767.html.
- [8] Jeremy L. Hsu* and Gregory R. Goldsmith, CBE—Life Sciences Education 20:es1, 1–13, Spring 2021.
- [9] Google images

मृदा संरक्षण एवं उर्वरक क्षमता बढ़ाने में बायोचर की भूमिका

अब्दुल रहमान शोधार्थी, जल एवं नवीनीकरणीय ऊर्जा विभाग भारतीय प्रौद्योगिकी संस्थान रूड़की

प्रो. सोनल के. ठेंगणे जल एवं नवीनीकरणीय ऊर्जा विभाग भारतीय प्रौद्योगिकी संस्थान रूडकी

इस समस्या का प्रभावी समाधान हो सकता है, हालांकि इस विषय पर अभी गहन शोध की आवश्यकता है। इस अध्ययन में बायोचार से मृदा स्वास्थ्य और फसलों पर पड़ने वाले प्रभावों का विश्लेषण किया गया है।

चित्रः बायोचार का भौतिक रुप

बायोचार:

बायोचार, एक चारकोल जैसा दिखने वाला पदार्थ है। यह एक काला, हल्का और छिद्रयुक्त पदार्थ होता है। जो एक उच्च कार्बन युक्त पदार्थ के रुप में जाना जाता है। यह ऑक्सीजन की अनुपस्थिति में पायरोलिसिस प्रक्रिया द्वारा प्राप्त किया जाता है तथा मिट्टी में सुधार, जल उपचार और कार्बन पृथक्करण जैसे विभिन्न उपयोगों के लिए जाना जाता है।

बायोचार बनाने के लिए कच्ची सामग्री के रूप में अपशिष्ट जैविक पदार्थों का उपयोग किया जाता है, जैसे फलों के छिलके, कृषि अपशिष्ट और घरेलू अपशिष्ट आदि। भारत में प्रतिवर्ष लगभग 500 मिलियन टन कृषि अपशिष्ट उत्पन्न होता है, जिसमें फसलों के अवशेष, भूसा, पत्तियाँ तथा अन्य जैविक पदार्थ सम्मिलित होते हैं। इनमें से लगभग 20-25% मिलियन टन फसल अपशिष्ट खुले में जला दिया जाता है। यह प्रक्रिया वायु प्रदूषण को बढ़ावा देने के साथ-साथ मृदा की उर्वरता में भी गिरावट लाती है। इन अपशिष्टों से बायोचार बनाकर इसे जैविक खाद के रूप में प्रयोग किया जा सकता है, जो मृदा की उर्वरता को बनाए रखने के साथ- साथ अपशिष्ट प्रबंधन और प्रदूषण

नियंत्रण का भी प्रभावी समाधान होगा। इस अध्ययन में, चावल के भूसे से 300 °C सेल्सियस पर बायोचार तैयार किया गया और फिर इसे 1%, 3% और 5% के अनुपात में मुदा में मिलाया गया है। इस अध्ययन में पाया गया कि बायोचार मुदा की जल धारण क्षमता, pH, कैटायन एक्सचेंज क्षमता, जैविक कार्बन और पोषक तत्वों की मात्रा को सुधारता है। रासायनिक खाद (75%) के साथ <mark>1% बायोचार लगाने</mark> वाले प्रयोग में पौधों की वृद्धि 100% रासायनिक खाद वाले प्रयोग के बराबर पाई गई। इस प्रयोग में बायोचार लगभग 10% सिंचाई के पानी की और 25% रासायनिक खाद की आवश्यकता को पूरा करने में सफल रहा। अतः बायोचार कृषि उत्पादन की लागत को घटाने में सहायक साबित हो सकता है। मृदा स्वास्थ्य को सुधारने के अतिरिक्त, बायोचार अपशिष्ट प्रबंधन <mark>और कार्बन संचयन के लिए एक सतत दिशा</mark> प्रदान करता है।

चित्र: बायोचार के उपयोग से कृषि उर्वरता में बढ़ोत्तरी

हाइपोकाइनेटिक रोगों की जननी: गतिहीन जीवन शैली

डॉ. आशीष यादव

पीएच.डी. (शारारिक शिक्षा), पोषण एवं स्वास्थ्य शिक्षा में डिप्लोमा क्रीड़ा प्रशिक्षण (टेनिस) में डिप्लोमा खाद्य एवं पोषण कार्यक्रम (डीएचएसएफ) सहायक क्रीड़ा अधिकारी (एस.एस.) भारतीय प्रौद्योगिकी संस्थान रूडकी

शारीरिक निष्क्रियता एक तेजी से बढ़ती सार्वजनिक स्वास्थ्य समस्या है तथा यह निष्क्रियता मोटापा, मधुमेह एवं कैंसर सहित कई पुरानी बीमारियों और स्वास्थ्य संबंधी जटिलताओं को जन्म देती है। रोगी के समग्र स्वास्थ्य में सुधार के अलावा, शारीरिक गतिविधि बढ़ाना पुरानी बीमारियों के उपचार और रोकथाम में भी कारगर साबित हुआ है।

महत्वपूर्ण बात यह नहीं है कि किसी व्यक्ति के पास कितने पैर हो सकते हैं या नहीं हो सकते हैं अथवा कुर्सी किस तरह की है। मुद्दा यह है कि अक्सर बहुत देर तक बैठे रहना शारीरिक निष्क्रियता को बढ़ावा दे रहा है और मनुष्य को मार रहा है। एक गतिहीन जीवनशैली में व्यक्ति बहुत कम या अनियमित शारीरिक गतिविधि के साथ जीता है। इस प्रकार के व्यक्ति के लिए एक शब्द "काउच पोटैटो" प्रयोग किया जा सकता है, लेकिन यह शब्द थोड़ा भ्रामक प्रतीत होता है; यदि काउच वाले हिस्से को हटा दिया जाए, तो एक आलू काउच पर भी उतना ही सक्रिय होता है जितना कि रेसट्रैक पर। मनुष्य प्रजाति को, लंबे

समय तक बैठने के लिए नहीं बनाया गया है। जो लोग गतिहीन जीवन जीते हैं तो उनकी यह जीवनशैली हाइपोकाइनेटिक बीमारियों का कारण बनती है। आधुनिक समाज में गतिहीन जीवनशैली के प्रचलन से हाइपोकाइनेटिक रोगों की घटनाओं में उल्लेखनीय वृद्धि हुई है जिससे स्वास्थ्य संबंधी गंभीर जोखिम और चुनौतियाँ उत्पन्न हुई हैं। स्वास्थ्य साहित्य में शारीरिक गतिविधि में भागीदारी के महत्व पर जोर दिया गया है। पहले संक्रामक रोग ही स्वास्थ्य संबंधी चिंताएँ पैदा करते थे लेकिन वर्तमान परिदृश्य में हाइपोकाइनेटिक समस्याएँ बहुत चिंता का विषय हैं। हाइपो का अर्थ है "कम या अभाव" और काइनेटिक का अर्थ है गति। हाइपोकाइनेटिक रोग शारीरिक गतिविधि की कमी और अस्वास्थ्यकर खान-पान की आदतों के कारण होते हैं। लंबे समय तक बैठे रहना, व्यायाम न करना और गतिहीन व्यवहार हाइपोकाइनेटिक रोग के विकास और प्रगति में योगदान करते हैं।

ये स्थितियाँ मोटापा, कोरोनरी धमनी रोग, मधुमेह, उच्च रक्तचाप, स्ट्रोक, गठिया आदि जैसी दीर्घकालिक बीमारियों के विकास के बढ़ते जोखिम से जुड़ी हैं। गतिहीन व्यवहार मानसिक स्वास्थ्य समस्याओं में भी योगदान करता है, जिनमें चिंता, अवसाद और संज्ञानात्मक गिरावट शामिल हैं। विश्व स्वास्थ्य संगठन के अनुसार व्यक्तिगत स्वास्थ्य और जीवन की गुणवत्ता से संबंधित 60% कारक जीवनशैली से संबंधित हैं। लाखों लोग अस्वास्थ्यकर जीवनशैली का पालन करते हैं। इसलिए लोगों को अस्वास्थ्यकर जीवनशैली से जुड़ी स्वास्थ्य समस्याओं का सामना करना पड़ता है। शारीरिक गतिविधि के लिए खेल संबंधी गतिविधियाँ जैसे टेनिस, पैदल चलना, योग,

दौड़ना, साइकिल चलाना, एरोबिक्स आदि का उपयोग किया जा सकता है। नियमित शारीरिक गतिविधि अच्छे स्वास्थ्य और हाइपोकाइनेटिक स्थितियों की रोकथाम के लिए महत्वपूर्ण है। व्यायाम और आहार के महत्व को शायद आज से पहले कभी इतनी अच्छी तरह से स्वीकार नहीं किया गया होगा।

विगत अनुभवों एवं अध्ययनों ने यह साबित किया है कि उपाय, बीमारियों से बचाव करने के सबसे अच्छे तरीके हैं, और कई मुश्किल मामलों में ये दवाओं का विकल्प न सही, तो एक शक्तिशाली सहायक ज़रूर होते हैं।"

चित्र: निष्क्रियता के कारण हाइपोकाइनेटिक रोगों की उत्पत्ति

हाइपोकाइनेटिक रोग के प्रकार:

शरीर की विभिन्न चिकित्सकीय स्थितियां हाइपोकाइनेटिक रोगों की श्रेणी में आती हैं, जो इस प्रकार है:

• मोटापा: यह एक चिकित्सा स्थिति है जिसमें शरीर की अतिरिक्त वसा इस हद तक जमा हो जाती है कि यह संभावित रूप से स्वास्थ्य पर नकारात्मक प्रभाव डाल सकती है।

 कोरोनरी धमनी रोग: यह हृदय की धमनियों में एथेरोमेटस पट्टिका के निर्माण के कारण हृदय की मांसपेशियों में रक्त प्रवाह की कमी से संबंधित हृदय रोग का एक प्रकार है।

- मधुमेह: यह एक बहुत ही पुरानी और आम बीमारी है जो तब होती है, जब रक्त में शर्करा बहुत अधिक होती है।
- उच्च रक्तचाप: इसे हाइपरटेंशन और हाई ब्लड प्रेशर के रूप में भी जाना जाता है, यह एक दीर्घकालिक चिकित्सा स्थिति है जिसमें धमनियों में रक्तचाप लगातार बढ़ा रहता है।
- स्ट्रोक: यह एक ऐसी चिकित्सा स्थिति है जो मस्तिष्क को ऑक्सीजन की आपूर्ति में कमी
- के कारण होती है। उच्च ऊर्जा युक्त खाद्य पदार्थों का अत्यधिक सेवन, बैठे-बैठे काम करना और शारीरिक गतिविधि की कमी के कारण शरीर मस्तिष्क को पर्याप्त ऑक्सीजन देने में कभी-कभी अक्षम हो जाता है।
- गठिया: यह एक ऐसी स्थिति है जो जोड़ों में दर्द, अकड़न, सूजन और जलन का कारण बनती है।

चित्रः शारारिक गतिविधि हेतु विभिन्न व्यायाम

हाइपोकाइनेटिक रोगों की रोकथाम:

यदि दैनिक जीवन में शारारिक सक्रियता से जुड़े कुछ नियमों का पालन किया जाए, तो हाइपोकाइनेटिक रोगों की उत्पत्ति को रोका जा सकता है:

- 1. हाइपोकाइनेटिक रोगों में व्यायाम का महत्व
 - उच्च रक्तचाप के जोखिम को 40% कम

- करता है और वजन नियंत्रण में रखता है।
- हृद्य की मांसपेशियों की रक्त और ऑक्सीजन पंप करने की क्षमता में वृद्धि।
- रक्त लिपिड के स्तर को कम करके एथेरोस्क्लेरोसिस को रोकता है।
- सभी हृदय रोगों में सबसे प्रचलित और गंभीर दिल के दौरे के जोखिम को कम करता है।
- कोरोनरी परिसंचरण में सुधार करता है

- जिससे दिल का दौरा पड़ने या इससे मृत्यु की संभावना कम हो जाती है।
- व्यायाम समय से पहले मृत्यु के जोखिम 40% को कम करता है।
- व्यायाम अवसाद और चिंता को कम करता है।
- व्यायाम स्वस्थ हिंडुयों मांसपेशियों और जोड़ों का निर्माण और रखरखाव करता है।
- व्यायाम वृद्धों को अधिक मजबूत बनाता है और बिना गिरे बेहतर ढंग से चलने में सक्षम बनाता है।

2. स्वस्थ आहार ग्रहण करना

- संतुलित पोषण वाले फल, सब्जियाँ, साबुत अनाज, दुबला प्रोटीन और स्वस्थ वसा सहित विभिन्न प्रकार के खाद्य पदार्थ खाएं।
- प्रसंस्कृत खाद्य पदार्थ जैसे चीनी, नमक और वसा वाले खाद्य पदार्थीं का सेवन कम करें।

3. नियमित स्वास्थ्य जांच

नियमित जांच के द्वारा स्वास्थ्य समस्याओं का शीघ्र पता लगाने के लिए जांच और स्क्रीनिंग

- का समय निर्धारित किया जाए।
- 4. रक्तचाप, कोलेस्ट्रॉल और रक्त शर्करा के स्तर जैसे महत्वपूर्ण स्वास्थ्य संकेतकों पर नज़र रखें।
- 5. समय-समय पर सामाजिक गतिविधियों या समूह क्रिया-कलापों में भाग लें जो शारीरिक गतिविधि और स्वास्थ्य को बढ़ावा देते हैं।
- 6. कार्यस्थल पर लंबे समय तक बैठने वाले कार्यों के दौरान नियमित ब्रेक लेकर इधर-उधर घूमें और खिंचाव करें।
- 7. हाइपोकाइनेटिक रोगों के जोखिमों और सक्रिय जीवनशैली के महत्व के बारे में खुद को शिक्षित करें।

स्पष्ट है कि यदि मनुष्य सुनियोजित एवं अनुशासनपूर्ण जीवन जीना शुरू करें, हाइपोकाइनेटिक रोगों के विकास के जोखिम को काफी कम किया जा सकता है और समग्र स्वास्थ्य और जीवन की गुणवत्ता में सुधार हो सकता है। 80 वर्ष की आयु के सक्रिय व्यक्तियों में 60 वर्ष की आयु के निष्क्रिय व्यक्तियों की तुलना में मृत्यु का जोखिम कम होता है। इस प्रकार आज के दौर में बैठना हमारी पीढ़ी के लिए स्मोकिंग करने जैसा है

- भारतीय संविधान के अनुच्छेद 343 (1) के अनुसार हिंदी हमारे देश की राजभाषा है। 14 सितंबर 1949 को हिंदी को भारत की राजभाषा के रुप में स्वीकार किया गया।
- हिंदी को इसका नाम फारसी शब्द हिंद से मिला है, जिसका अर्थ है "सिंधु नदी की भूमि"।

रिट्रेक्शन और करेक्शन से ज्ञान शुद्धिकरण के साथ वैज्ञानिक विश्वसनीयता एवं अकादमिक प्रकाशन में नैतिक मूल्यों की स्थापना

सन्तोष कुमार

सहायक पुस्तकालय सूचना अधिकारी महात्मा गाँधी केंद्रीय पुस्तकालय भारतीय प्रौद्योगिकी संस्थान रूड़की

सारांश: प्रस्तृत लेख में यह समझाने का प्रयत किया गया है कि कैसे रिट्रेक्शन और करेक्शन (वापसी और सधार) के माध्यम से ज्ञान शद्धिकरण के साथ वैज्ञानिक विश्वसनीयता एवं अकादमिक प्रकाशन में नैतिक मूल्यों की स्थापना की जाए। यदि इस प्रक्रिया को लेखक समुदाय के द्वारा वैज्ञानिक प्रक्रिया का हिस्सा माना जाए, तो बहुत ही अच्छा संदेश अकादिमक और वैज्ञानिक शोध समुदाय में जाएगा, क्योंकि अकादिमक और वैज्ञानिक शोध का मूल उद्देश्य ज्ञान का विस्तार करना तथा समाज को वैज्ञानिक साहित्य और तथ्यपरक सूचना उपलब्ध कराना है। परंतु कभी-कभी अनजाने में या दुर्भाग्यवश, शोध में त्रुटियाँ हो जाती हैं। ऐसी स्थितियों में रिट्रेक्शन (वापसी) और करेक्शन (सुधार) जैसे उपाय, ज्ञान शुद्धिकरण के प्रमुख साधन बनते हैं (फैनेली, 2018; वेगर एंड विलियम्स, 2011)। ये न केवल वैज्ञानिक साहित्य को त्रुटियों से मुक्त करते हैं, बल्कि शोध प्रक्रिया की पारदर्शिता, ईमानदारी और विश्वसनीयता को बनाए रखने में भी सहायक होते हैं (सीओपीई, 2019)। वैज्ञानिक प्रकाशन में रिट्रेक्शन और करेक्शन प्रक्रियाएँ अनुसंधान की शुद्धता, विश्वसनीयता एवं पारदर्शिता सुनिश्चित करने के लिए अत्यंत आवश्यक हैं। रिट्रेक्शन का तात्पर्य उस स्थिति से है जब किसी शोध पत्र को त्रुटियों, डेटा की हेराफेरी, साहित्यिक चोरी या नैतिक उल्लंघन के कारण औपचारिक रूप से वापस लिया जाता है (बार-इलान और हलेवी, 2017)। वहीं, करेक्शन का उद्देश्य केवल त्रुटियों को सुधारना होता है, जबिक मूल शोध मान्य रहता है। इन दोनों प्रक्रियाओं का महत्व इस तथ्य में निहित है कि ये वैज्ञानिक समुदाय में विश्वास बनाए रखते हैं और गलत सूचना के प्रसार को रोकते हैं (ब्रेनार्ड एंड यू, 2018)। हाल के वर्षों में डिजिटल प्रकाशन और खुली पहुँच (Open Access) के कारण रिट्रेक्शन की संख्या बढी है, जिससे शोध की नैतिकता पर अधिक ध्यान देने की आवश्यकता है। हाल के अध्ययनों से पता चलता है कि रिट्रेक्शन की दर वैश्विक रूप से तेजी से बढ़ी है -उदाहरण के लिए, यूरोपीय बायोमेडिकल प्रकाशनों में 2000 से 2020 के दौरान प्रति 100,000 प्रकाशनों पर रिट्रेक्शन्स की संख्या

10.7 से बढ़कर 44.8 हो गई है (स्प्रिंगर लिंक)। भारत में, 1990–2024 के दौरान वेब ऑफ़ साइंस में इंडेक्स किए गए 3,162 रिट्रेक्टेड प्रकाशनों का विश्लेषण इस वृद्धि का प्रमाण है, जिसमें प्लैगरिज़्म और पीयर-रिव्यू में हेरफेर प्रमुख कारण हैं (सिंह एवं अन्य, 2024)। रिट्रैक्शन की बढ़ती प्रवृत्ति इस बात की ओर संकेत है कि वैज्ञानिक समुदाय में नैतिकता, दोष पहचान और सुधार की प्रक्रियाएं और अधिक सुदृढ़ करने की आवश्यकता है। अन्यथा पत्रिका और लेखक की विश्वसनीयता पर नकारात्मक प्रभाव और प्रतिष्ठा को नुकसान पहुंचता है (फैनेली, 2022)। भारतीय संदर्भ में, इस विषय पर नीतिगत हस्तक्षेप और शोधकर्ताओं को नैतिकता संबंधी प्रशिक्षण अनिवार्य है (नायर, 2023)।

कीवर्ड्स: रिट्रेक्शन, करेक्शन, शोध नैतिकता, वैज्ञानिक साहित्य, ज्ञान शुद्धिकरण, पारदर्शिता, नैतिक उल्लंघन, प्रकाशन विश्वासनीयता।

यह प्रक्रिया त्रुटियों को ठीक करने और पेशेवर मानकों को बनाए रखने के लिए शिक्षा, विज्ञान और पत्रकारिता में महत्वपूर्ण होती है। वापसी के प्राथमिक कारणों में अनुसंधान कदाचार (निर्माण, मिथ्याकरण और साहित्यिक चोरी), नैतिक उल्लंघन, ईमानदार त्रुटियाँ, डुप्लिकेट प्रकाशन, लेखक विवाद, सहकर्मी समीक्षा हेरफेर और कॉपीराइट उल्लंघन या मानहानि जैसे कानूनी समस्याएँ शामिल हैं परिचय: वापसी और सुधार की प्रक्रिया, प्रकाशित कार्य को वापस लेने और सुधार के लिए एक औपचारिक तंत्र के रूप में कार्य करती है, जो इसकी वैधता, विश्वसनीयता या नैतिक अखंडता से समझौता करने वाली समस्याओं के कारण होती है। यह प्रक्रिया त्रुटियों को ठीक करने और पेशेवर मानकों को बनाए रखने के लिए शिक्षा, विज्ञान और पत्रकारिता में महत्वपूर्ण होती है । वापसी के प्राथमिक कारणों में अनुसंधान कदाचार (निर्माण, मिथ्याकरण और साहित्यिक चोरी), नैतिक उल्लंघन, ईमानदार त्रुटियाँ, डुप्लिकेट प्रकाशन, लेखक विवाद, सहकर्मी समीक्षा हेरफेर और कॉपीराइट उल्लंघन या मानहानि जैसे कानूनी समस्याएँ शामिल हैं। वापसी के महत्वपूर्ण परिणाम होते हैं, जो व्यक्तिगत प्रतिष्ठा, पत्रिका की विश्वसनीयता और वैज्ञानिक साहित्य की समग्र अखंडता को प्रभावित करते हैं। वापसी को रोकने के लिए, शोधकर्ताओं, लेखकों और प्रकाशकों को सख्त नैतिक तथा पेशेवर मानकों का पालन करना चाहिए। उचित उद्धरण प्रथाओं, साहित्यिक चोरी का पता लगाने और सटीक डेटा संग्रह के माध्यम से शोध अखंडता बनाए रखना महत्वपूर्ण

नैतिक अनुपालन के लिए आवश्यक अनुमोदन, सूचित सहमित प्राप्त करना और हितों के टकराव का खुलासा करना आवश्यक है। डेटा की सटीकता की दोबारा जांच करना, डुप्लिकेट सबिमशन से बचना और लेखकत्व विवादों को जल्दी हल करना वापसी के जोखिमों को कम कर सकता है।

निष्पक्ष मूल्यांकन सुनिश्चित करके कानूनी और कॉपीराइट विनियमों का सम्मान करके सहकर्मी समीक्षा अखंडता को बनाए रखना भी आवश्यक है। इन सर्वोत्तम प्रथाओं को लागू करके, शैक्षणिक और वैज्ञानिक समुदाय वापसी को न्यूनतम किया प्रकाशित शोध लेख न केवल ज्ञान के प्रसार का एक साधन हैं, बल्कि भविष्य के अध्ययनों, नीति-निर्माण और व्यावहारिक अनुप्रयोगों के लिए एक संदर्भ बिंदु भी है। हालाँकि, किसी भी मानवीय प्रयास की तरह, शोध और प्रकाशन प्रक्रिया त्रुटियों, विसंगतियों या अनैतिक प्रथाओं से मुक्त नहीं है

जा सकता है, अनुसंधान की विश्वसनीयता को बनाए रख सकते हैं, और विद्वानों के प्रकाशनों की अखंडता को सुदृढ़ कर सकते हैं।

वैज्ञानिक शोध का आधार सत्यता, विश्वसनीयता, प्रामाणिकता और पारदर्शिता है। परंतु अनेक बार प्रकाशनों में त्रुटियाँ (Errors), मिथ्या डेटा (Fabricated Data), प्लैगरिज्म (Plagiarism) और अनैतिक आचरण सामने आते हैं। ऐसे में रिट्रेक्शन (Retraction) और करेक्शन (Correction) जैसे तंत्र वैज्ञानिक ज्ञान को शुद्ध करने (Knowledge Purification) की आवश्यकता को पूर्ण करते हैं। मुख्य शब्द: रिट्रेक्शन एवं करेक्शन अकादमिक जगत में प्रकाशित साहित्य की नैतिकता, विश्वसनीयता और अखंडता/सत्यनिष्ठा विज्ञान की उन्नति के लिए आधार के रूप में काम करती है। प्रकाशित शोध लेख न केवल ज्ञान के प्रसार का एक साधन हैं, बल्कि भविष्य के अध्ययनों, नीति-निर्माण और व्यावहारिक अनुप्रयोगों के लिए एक संदर्भ बिंद् भी है। हालाँकि, किसी भी मानवीय प्रयास की तरह, शोध और प्रकाशन प्रक्रिया त्रुटियों, विसंगतियों या अनैतिक प्रथाओं से मुक्त नहीं है। ये अनजाने में की गई गलतियों से लेकर जानबुझकर किए गए कदाचार तक हो सकते हैं, जिससे ऐसी अशुद्धियाँ हो सकती हैं जो वैज्ञानिक मानकों की विश्वसनीयता को खतरे में डाल सकती हैं। ऐसी <mark>अशुद्धियाँ जो प्रकाशित</mark> की जा चुकी हैं और गलत तथ्यों को उजागर करती हैं, तो उस प्रकाशित साहित्य को वैज्ञानिक समुदाय के दबाव या प्रभाव से वापस लेने की प्रक्रिया को अकादमिक भाषा में रिट्रेक्शन कहा जाता है रिट्रेक्शन का सामान्य अर्थ किसी ऐसे स्टेटमेंट या वक्तव्य को वापस लेना है जो पहले कही गई, लिखी गई, मुद्रित की गई या पहले पूर्ण की जा चुकी हो। अन्य शब्दों में कहें तो रिट्रेक्शन तब होता है जब किसी प्रकाशित कार्य जैसे एक लेख को महत्वपूर्ण त्रुटियों, धोखाधड़ी, नैतिक मुद्दों या अन्य कारणों से वापस ले लिया जाता है जो लेख के जाँच-परिणाम या निष्कर्षों को <mark>अमान्य करते</mark> हैं। जिसका मुख्य उद्देश्य वैज्ञानिक, शैक्षणिक या व्यावसायिक रिकॉर्ड की अखंडता बनाए रखना है।

ऐतिहासिक पृष्ठभूमि और अंतरराष्ट्रीय परिदृश्यः वापसी और सुधार के कारण इसके रूप बदल गए हैं। उदाहरण के लिए, 20वीं सदी तक, लेखक लगातार खुद की साहित्यिक चोरी करते थे - यानी, अपने काम की नकल को प्रकाशित होने देते थे, बस लोगों तक अपनी बात पहुँचाने के लिए। इसे आमतौर पर एक बुरी बात नहीं माना जाता था। परंतु आज, अपने काम की नकल करना एक वापसी योग्य अपराध माना जाता है। हम हमेशा इस बात पर ऐतिहासिक परिप्रेक्ष्य प्राप्त करना पसंद करते हैं कि वैज्ञानिकों ने रिकॉर्ड को सही करने का प्रयास कैसे किया, जैसे कि 1756 में बेंजामिन फ्रैंकलिन के कुछ कार्यों के बारे में प्रकाशित राय को वापस लेने का प्रयास। हालाँकि 18वीं सदी के उस नोट में "retract" शब्द का

प्रयोग किया गया था, लेकिन यह आज की तरह वापसी नहीं थी, जिसमें रिकॉर्ड से पूरी रचना को हटा दिया जाता है। हार्वर्ड विश्वविद्यालय में विज्ञान इतिहासकार एलेक्स सिस्जर के अनुसार, ये आधुनिक समय की वापसी अपेक्षाकृत हाल की घटना है, जो पिछले कुछ दशकों में ही शुरू हुई है। प्राचीन और शास्त्रीय काल में सुकरात और सिसरो जैसे प्राचीन यूनानी और रोमन विद्वानों ने तर्कों या सार्वजनिक बयानों में त्रुटियों को ठीक करने की आवश्यकता पर जोर दिया था। दार्शनिक अक्सर अपनी शिक्षाओं को संशोधित करते थे या पहले की गलतफहिमयों को स्वीकार करते थे। मध्यकालीन काल में थॉमस एक्किनास जैसे विद्वान कभी-कभी अपने पहले के कार्यों पर फिर से विचार करते थे और विकसित होते धार्मिक या दार्शनिक दृष्टिकोणों के साथ संरेखित करने के लिए विचारों को वापस लेते थे या संशोधित करते थे। विधर्म के आरोपी व्यक्तियों को कभी-कभी गंभीर दंड से बचने के लिए अपने बयान वापस लेने की अनुमति दी जाती थी। वैज्ञानिक क्रांति (16वीं-18वीं शताब्दी) में गैलीलियो (1633) ने कैथोलिक चर्च के दबाव में सूर्य केंद्रित मॉडल के लिए अपने समर्थन को वापस ले लिया, जिससे यह स्पष्ट हो गया कि बौद्धिक और धार्मिक संघर्ष के समय में कैसे पीछे हटने के लिए मजबूर किया जा सकता है। पीयर रिव्यू का उद्भव तथा रॉयल सोसाइटी जैसी प्रारंभिक वैज्ञानिक समितियों ने वैज्ञानिक अखंडता को बनाए रखने के लिए गलत प्रकाशनों के सुधार और वापसी को प्रोत्साहित करना शुरू कर दिया। 19वीं और 20वीं सदी में पत्रकारिता और प्रकाशनों में जैसे-जैसे समाचार-पत्रों और अकादिमक पत्रिकाओं का प्रसार हुआ, गलत सूचना या रिपोर्टिंग त्रुटियों को ठीक करने के लिए औपचारिक वापसी, संपादकीय प्रक्रियाओं का

प्राचीन और शास्त्रीय काल में सुकरात और सिसरो जैसे प्राचीन यूनानी और रोमन विद्वानों ने तर्कों या सार्वजनिक बयानों में त्रुटियों को ठीक करने की आवश्यकता पर जोर दिया था। दार्शनिक अक्सर अपने शिक्षाओं को संशोधित करते थे या पहले की गलतफहमियों को स्वीकार करते थे। मध्यकालीन काल में थॉमस एकिनास जैसे विद्वान कभी-कभी अपने पहले के कार्यों पर फिर से विचार करते थे और विकसित होते धार्मिक या दार्शनिक दृष्टिकोणों के साथ संरेखित करने के लिए विचारों को वापस लेते थे

हिस्सा बन गई। आधुनिक युग में या डिजिटल और सोशल मीडिया के ऑनलाइन प्लेटफ़ॉर्म के ज़रिए अब वापसी तेज़ी से हो रही है। वैज्ञानिक पत्रिकाएँ वापस लिए गए शोधपत्रों (जैसे, रिट्रेक्शन वॉच) का डेटाबेस बनाए रखनें और मीडिया आउटलेट लेखों में सुधार पोस्ट करते हैं।

रिट्रेक्शन की उत्पत्ति: "रिट्रेक्शन" (Retraction) शब्द की उत्पत्ति लैटिन भाषा से हुई है। यह "Retractio" से लिया गया है, जिसका अर्थ होता है "वापस लेना" या "हटाना"। वापस या पुनर्विचार का ऐतिहासिक अर्थ किसी चीज़ को वापस लेने की क्रिया से है, चाहे वह कोई कथन हो, विश्वास हो या फिर कोई भौतिक वस्तु हो। वैज्ञानिक युग में यह

जब किसी लेख को वापस लिया जाता है या संशोधित किया जाता है, तो यह संकेत देता है कि अकादिमक समुदाय अपने कार्यों के प्रति उत्तरदायी है। इससे नए शोधकर्ता सही मार्गदर्शन प्राप्त करते हैं और पुनरावृत्ति की संभावनाएँ कम हो जाती हैं

शब्द, शब्दों या प्रकाशनों, विचारों की औपचारिक वापसी का प्रतिनिधित्व करने के लिए विकसित हुआ। वर्तमान में वैज्ञानिक, अकादमिक प्रकाशन में वापसी एक ऐसी प्रक्रिया है जिसके द्वारा अकादिमक जर्नल में प्रकाशित शोधपत्र को इस हद तक गंभीर रूप से दोषपूर्ण माना जाता है कि उसके परिणामों और निष्कर्षों की विश्वसनीयता पर अब भरोसा नहीं किया जा सकता है। जिसका परिणाम वापस लिए गए लेखों को प्रकाशित साहित्य से हटाया नहीं जाता बल्कि उन्हें रिटेक्शन के रूप में चिह्नित किया जाता है। वहीं "करेक्शन" या "सुधार" किसी प्रकाशित कार्य में किया गया वह संशोधन है, जो संपूर्ण कार्य को अमान्य किए बिना छोटी-मोटी त्रुटियों (जैसे, टाइपो, तथ्यात्मक अशुद्धियाँ) को ठीक करता है। जिसका मुख्य उद्देश्य विषय-वस्तु को वापस लिए बिना उसकी सटीकता और स्पष्टता सुनिश्चित करना है। जिसे अक्सर छोटी-छोटी समस्याओं के लिए उपयोग किया जाता है तथा जो मूल परिणामों या निष्कर्षों से समझौता नहीं करते हैं।

ज्ञान शुद्धिकरण की भूमिका: ज्ञान शुद्धिकरण का अर्थ है- वैज्ञानिक ज्ञान को त्रुटियों, मिथ्या सूचनाओं और अनैतिकताओं से मुक्त करना। रिट्रेक्शन और करेक्शन इस प्रक्रिया के प्रभावी उपकरण हैं। जब किसी लेख को वापस लिया जाता है या संशोधित किया जाता है, तो यह संकेत देता है कि अकादिमिक समुदाय अपने कार्यों के प्रति उत्तरदायी है। इससे नए शोधकर्ता सही मार्गदर्शन प्राप्त करते हैं और पुनरावृत्ति की संभावनाएँ कम हो जाती हैं। उदाहरण के लिए, बायोमेडिकल रिसर्च में एक अध्ययन से यह सामने आया कि वर्ष 2000 से 2010 के बीच रिट्रेक्शन की दर में पाँच गुना वृद्धि हुई, जो इस बात का संकेत है कि समुदाय अब शोध की नैतिकता को गंभीरता से लेने लगा है (फ़ंग और अन्य, 2012)।

वैज्ञानिक विश्वसनीयता की स्थापना: रिट्रेक्शन और करेक्शन के माध्यम से यह दर्शाया जाता है कि विज्ञान एक स्व-सुधार प्रणाली है। इसमें यदि कोई गलती होती है, तो उसे स्वीकार कर सुधारा जाता है। इससे वैज्ञानिकों की साख बनी रहती है, और पाठकों का भरोसा मजबूत होता है। ह्यूस्टन यूनिवर्सिटी की प्रोफेसर डॉ. एलिसन एबॉट ने कहा था — "Science isn't infallible, but it is self-correcting, and that's its greatest strength."

रिट्रेक्शन और करेक्शन: रिट्रेक्शन उस प्रक्रिया को कहते हैं जिसमें कोई वैज्ञानिक प्रकाशन वापस लिया जाता है क्योंकि उसमें गंभीर त्रुटियाँ, डेटा फेब्रिकेशन, प्लैगरिज्म, या अनैतिक अनुसंधान पद्धतियाँ पाई जाती हैं। वहीं, करेक्शन का प्रयोग तब किया जाता है जब किसी प्रकाशन में मामूली लेकिन महत्वपूर्ण त्रुटियाँ हो, जिन्हें सुधारकर लेख/ प्रलेख को विश्वसनीय बनाया जा सकता है। उदाहरण के लिए, नेचर और साइंस जैसी विश्वप्रसिद्ध जर्नलों ने समय-समय पर उच्च-स्तरीय शोध पत्रों को रिट्रैक्ट किया है जब उनके डेटा या निष्कर्षों की सत्यता पर सवाल उठे (ग्रिनेइसेन और जृहंग, 2012)।

रिट्रेक्शन का उद्देश्य उन शोध लेखों को वापस लेना है जिनमें गंभीर त्रुटियाँ, डेटा का फर्जीवाड़ा, प्लेज़रिज़्म या नैतिक उल्लंघन पाए जाते है। करेक्शन का प्रयोग छोटी लेकिन महत्वपूर्ण गलतियों को सुधारने के लिए किया जाता है। यह प्रक्रिया सुनिश्चित करती है कि केवल सटीक और प्रमाणित ज्ञान ही वैज्ञानिक समुदाय तक पहुँचे। यदि त्रुटिपूर्ण शोध बिना सुधारे प्रकाशित होता है, तो वह अन्य शोधों के लिए गलत आधार बन सकता है

रिट्रेक्शन्स और करेक्शन का महत्व: रिट्रेक्शन (Retraction) और करेक्शन (Correction) का महत्व शैक्षणिक और वैज्ञानिक प्रकाशन के संदर्भ में अत्यंत महत्वपूर्ण है, क्योंकि ये ज्ञान की शुद्धता और विश्वसनीयता बनाए रखने में मुख्य भूमिका निभाते हैं। रिट्रेक्शन का उद्देश्य उन शोध लेखों को वापस लेना है जिनमें गंभीर त्रृटियाँ, डेटा का फर्जीवाडा, प्लेज़रिज़्म या नैतिक उल्लंघन पाए जाते है। करेक्शन का प्रयोग छोटी लेकिन महत्वपूर्ण गलतियों को सुधारने के लिए किया जाता है। यह प्रक्रिया सुनिश्चित करती है कि केवल सटीक और प्रमाणित ज्ञान ही वैज्ञानिक समुदाय तक पहुँचे। यदि त्रुटिपूर्ण शोध बिना सुधारे प्रकाशित होता है, तो वह अन्य शोधों के लिए गलत आधार बन सकता है। रिट्रेक्शन और करेक्शन इस गलत प्रभाव को रोकते हैं और आगे

के अनुसंधान को सही दिशा देते हैं। किसी भी शोध पत्रिका या शोधकर्ता की प्रतिष्ठा उनकी ईमानदारी और पारदर्शिता पर निर्भर करती है। जब गलतियों को स्वीकार कर उन्हें सुधारा जाता है, तो यह वैज्ञानिक समुदाय में भरोसा और नैतिक मूल्यों को मजबूत करता है। रिट्रेक्शन और करेक्शन की प्रक्रिया शोध प्रकाशन में नैतिक मानकों को लागू करती है। इससे पता चलता है कि विज्ञान में सत्यता सर्वोच्च प्राथमिकता है, न कि <mark>केवल परिणाम या रैंकिंग। गलतियों को पहचानना</mark> और सुधारना अन्य शोधकर्ताओं के लिए एक सीखने का अवसर है। यह बताता है कि विज्ञान में पारदर्शिता और आत्म-सुधार अनिवार्य हैं। COPE दिशा-निर्देश बताते हैं कि वापसी का उद्देश्य लेखकों को दंडित करना नहीं है । इसके अलावा, एक पेपर के लेखक, साथ ही अन्य लोग, त्रुटियों का पता लगाने पर वापसी की मांग कर सकते हैं। COPE दिशा-निर्देशों में कहा गया है कि वापस लिए गए शोध-पत्रों को वापस लिए गए शोध-पत्रों के रूप में लेबल किया जाना चाहिए और उन्हें सुलभ (ऑफ़लाइन और ऑनलाइन दोनों) होना चाहिए। अधिकांश पत्रिकाओं के अपने स्वयं के वापसी संबंधी दिशा-निर्देश हैं। फिर भी, वापसी का वैज्ञानिक समुदाय पर प्रभाव पड़ता है। सबसे पहले, यह वित्तीय दृष्टि से, समय और प्रतिभागियों दोनों के लिए संसाधनों की बर्बादी है। दूसरा, जब किसी का ध्यान नहीं जाता है, तो लेखक स्पष्ट रूप से या परोक्ष रूप से वापस लिए गए स्रोतों का उपयोग वैध वैज्ञानिक परिणामों के रूप में करते हैं, जिससे विज्ञान की विश्वसनीयता कम हो जाती है।

"वापसी" और "सुधार", कॉपीराइट उल्लंघन और साहित्यिक चोरी से भिन्न हैं: वापसी का मतलब है किसी प्रकाशित कार्य को बड़ी त्रुटियों या कदाचार के कारण वापस लेना, जिससे उसके निष्कर्ष अमान्य हो जाते हैं। सुधार में कार्य को वापस लिए बिना छोटी-मोटी गलितयों को ठीक करना शामिल है। दोनों ही सामग्री की अखंडता को बनाए रखने पर ध्यान केंद्रित करते हैं। कॉपीराइट उल्लंघन कॉपीराइट सामग्री का अनाधिकृत उपयोग है, जो निर्माता के कानूनी अधिकारों का उल्लंघन करता है। साहित्यिक चोरी किसी और के काम का उचित श्रेय दिए बिना उपयोग करना है, जो नैतिक मानकों का उल्लंघन करता है। दोनों ही सामग्री की वैधता के बजाय स्वामित्व और मौलिकता से संबंधित हैं।

रिट्रेक्शन के कारण: किसी प्रकाशित कार्य में यदि गंभीर समस्याओं को संबोधित करने के लिए वापसी की जाती है जो इसकी वैधता (Validity), नैतिक अनुपालन (Ethical Compliance) या अखंडता (Integrity) से समझौता करते हैं क्योंकि इसमें यह महत्वपूर्ण समस्या है। त्रृटियों को सुधारने और नैतिक मानकों को बनाए रखने के लिए शिक्षा, विज्ञान और पत्रकारिता सहित विभिन्न क्षेत्रों में वापसी की जाती है। वापसी के कई मुख्य कारण हैं। सबसे गंभीर कारणों में से एक है शोध कदाचार, जिसमें निर्माण (गलत डेटा बनाना), मिथ्याकरण (परिणामों में हेरफेर करना) और साहित्यिक चोरी (उचित स्वीकृति के बिना किसी और के काम का उपयोग करना) शामिल है। नैतिक उल्लंघन भी वापसी का कारण बनते हैं, जैसे बिना सूचित सहमति के अध्ययन करना, हितों के टकराव का खुलासा न करना या अनैतिक प्रयोगात्मक प्रथाओं में शामिल होना। इसके अतिरिक्त, डेटा संग्रह, विश्लेषण या कार्यप्रणाली में ईमानदार त्रुटियों के परिणामस्वरूप ऐसे निष्कर्ष निकल सकते हैं जो भ्रामक या गलत होते हैं, जिसके कारण वापसी की आवश्यकता होती है। एक अन्य समस्या डुप्लिकेट प्रकाशन है, जहां एक ही शोध को उचित प्रकटीकरण के बिना कई पत्रिकाओं में प्रकाशित किया जाता है, जिससे

साहित्य में अनावश्यक रूप से डाटा अथवा साहित्य पैदा होता है। लेखकीय विवाद, जैसे योगदानों का गलत या धोखाधड़ीपूर्ण श्रेय, भी वापसी को प्रेरित कर सकता है। अन्य चिंताओं में सहकर्मी समीक्षा में हेरफेर शामिल है, जहाँ नकली समीक्षकों या पक्षपातपूर्ण मूल्यांकनों का उपयोग करने जैसी अनैतिक प्रथाएँ समीक्षा प्रक्रिया की अखंडता को कमज़ोर करती हैं। अंत में, कॉपीराइट उल्लंघन, मान हानिकारक सामग्री या गोपनीयता के उल्लंघन सहित कानूनी मुद्दे भी प्रकाशित कार्य को वापस लेने का कारण बन सकते हैं। विद्वानों और पत्रकारिता के काम में भरोसा बनाए रखने में वापसी एक महत्वपूर्ण भूमिका निभाती है। वे यह सुनिश्चित करते हैं कि प्रकाशित रिकॉर्ड सटीक रहे, नैतिक शोध और <mark>प्रकाशन प्रथा</mark>ओं को बनाए रखें, तथा लेखकों, संस्थानों और पत्रिकाओं की विश्वसनीयता की रक्षा करें।

निवारक उपाय और नीति सुझाव: वापसी को रोकने के लिए, शोधकर्ताओं, लेखकों और प्रकाशकों को शोध और प्रकाशन प्रक्रिया के दौरान उच्च नैतिक एवं पेशेवर मानकों को बनाए

विद्वानों और पत्रकारिता के काम में भरोसा बनाए रखने में वापसी एक महत्वपूर्ण भूमिका निभाती है। वे यह सुनिश्चित करते हैं कि प्रकाशित रिकॉर्ड सटीक रहे, नैतिक शोध और प्रकाशन प्रथाओं को बनाए रखें, तथा लेखकों, संस्थानों और पत्रिकाओं की विश्वसनीयता की रक्षा करें रखना होता है। जिसके कारण वापसी किसी व्यक्ति की प्रतिष्ठा, पत्रिका की विश्वसनीयता और अकादिमक एवं वैज्ञानिक साहित्य की अखंडता को महत्वपूर्ण रूप से प्रभावित कर सकती है। इसलिए, प्रकाशित कार्य की सटीकता, पारदर्शिता और नैतिक अनुपालन सुनिश्चित करने के लिए सक्रिय उपाय करना आवश्यक है। सबसे महत्वपूर्ण रणनीतियों में से एक है शोध कदाचार को रोककर शोध अखंडता को बनाए रखना। लेखकों को बनावटीपन से बचना चाहिए, जिसमें गलत डेटा बनाना शामिल है; मिथ्याकरण, जो शोध परिणामों में हेरफेर करने को संदर्भित करता है; और साहित्यिक चोरी, जिसमें उचित स्वीकृति के बिना किसी अन्य व्यक्ति के काम का उपयोग करना शामिल है। उचित उद्धरण अभ्यास, साहित्यिक चोरी का पता लगाने वाले उपकरणों का उपयोग करना और सटीक शोध रिकॉर्ड रखना शोध अखंडता को बनाए रखने में मदद करते हैं। नैतिक अनुपालन सुनिश्चित करना भी उतना ही महत्वपूर्ण है। शोधकर्ताओं को नैतिकता

सबसे महत्वपूर्ण रणनीतियों में से एक है शोध कदाचार को रोककर शोध अखंडता को बनाए रखना। लेखकों को बनावटीपन से बचना चाहिए, जिसमें गलत डेटा बनाना शामिल है; मिथ्याकरण, जो शोध परिणामों में हेरफेर करने को संदर्भित करता है; और साहित्यिक चोरी, जिसमें उचित स्वीकृति के बिना किसी अन्य व्यक्ति के काम का उपयोग करना शामिल है।

समीक्षा बोर्डों से आवश्यक अनुमोदन प्राप्त करना चाहिए, खासकर जब वे मानव या पशु विषयों से संबंधित अध्ययन कर रहे हों। इसके अतिरिक्त, प्रतिभागियों से सुचित सहमति प्राप्त की जानी चाहिए, और शोध की विश्वसनीयता बनाए रखने के लिए किसी भी संभावित हितों के टकराव का पारदर्शी तरीके से खुलासा किया जाना चाहिए। ऐसी त्रुटियों की संभावना को कम करना, जिससे वापसी हो सकती है, लेखकों को लेख प्रस्तृत करने से पहले सटीकता के लिए डेटा की दोबारा जांच करनी चाहिए। इसमें डेटा संग्रह विधियों, सांख्यिकीय विश्लेषणों और शोध निष्कर्षों की पूरी तरह से पृष्टि करना शामिल है। सहकर्मी सहयोग, स्वतंत्र समीक्षा और प्रतिकृति अध्ययन आयोजित करने से अनजाने में हुई गलतियों की पहचान करने और शोध की विश्वसनीयता सुनिश्चित करने में मदद मिल सकती है। एक और महत्वपूर्ण मुद्दा डुप्लिकेट प्रकाशनों से बचना है। शोधकर्ताओं को एक ही काम को एक साथ कई पत्रिकाओं में भेजने करने या उचित प्रकटीकरण के बिना एक ही निष्कर्ष को पुनः प्रकाशित करने से बचना चाहिए। <mark>यह अभ्यास, जिसे स्व-साहित्यिक चोरी के रूप में</mark> <mark>जाना जाता है, जो अकादमिक समुदाय को</mark> गुमराह कर सकता है और पीछे हटने का कारण बन सकता है। इस समस्या को रोकने के लिए पिछले संबंधित कार्य का उचित संदर्भ देना और मुल योगदान प्रस्तुत करना आवश्यक है। लेखकत्व विवादों को जल्दी हल करने से भविष्य में होने वाले विवादों से बचने में भी मदद मिल सकती है, जिसके परिणामस्वरूप वापसी हो सकती है। प्रस्तुत करने से पहले लेखकत्व की भूमिकाओं और योगदानों के बारे में स्पष्ट दिशा-निर्देश स्थापित किए जाने चाहिए। शोधकर्ताओं को निष्पक्ष और नैतिक क्रेडिट आवंटन सुनिश्चित करने के लिए अंतर्राष्ट्रीय स्तर पर मान्यता प्राप्त शोधकर्ताओं को कॉपीराइट सामग्री के लिए उचित अनुमति लेनी चाहिए, अपमानजनक सामग्री से बचना चाहिए और डेटा गोपनीयता कानूनों का अनुपालन सुनिश्चित करना चाहिए। ऐसा न करने पर कानूनी परिणाम भुगतने पड़ सकते हैं और प्रकाशित कार्य को वापस लेने की संभावना बन सकती है

लेखकत्व मानदंडों का पालन करना चाहिए, जैसे कि मेडिकल जर्नल संपादकों की अंतर्राष्ट्रीय समिति (ICMJE) द्वारा उल्लिखित मानदंड। इसके अतिरिक्त, अकादिमक प्रकाशनों की गुणवत्ता और विश्वसनीयता बनाए रखने के लिए सहकर्मी समीक्षा की अखंडता को बनाए रखना महत्वपूर्ण है। लेखकों और समीक्षकों को नकली समीक्षकों का सुझाव देने, समीक्षा प्रक्रिया को प्रभावित करने या पक्षपातपूर्ण मूल्यांकन में संलग्न होने जैसी अनैतिक प्रथाओं से बचना चाहिए। शोध प्रस्तुतियों का वस्तुनिष्ठ मूल्यांकन सुनिश्चित करने के लिए पत्रिकाओं को पारदर्शी और कठोर सहकर्मी-समीक्षा नीतियों को लागु करना चाहिए। अंत में, किसी भी कार्य को प्रकाशित करने से पहले कानूनी और कॉपीराइट नियमों का सम्मान करना आवश्यक है। शोधकर्ताओं को कॉपीराइट सामग्री के लिए उचित अनुमित लेनी चाहिए, अपमानजनक सामग्री से बचना चाहिए और डेटा गोपनीयता कानूनों का अनुपालन सुनिश्चित करना चाहिए। ऐसा न करने पर कानूनी परिणाम भुगतने पड सकते हैं और प्रकाशित कार्य को वापस लेने

की संभावना बन सकती है। इन सर्वोत्तम प्रथाओं का पालन करके, शोधकर्ता, लेखक और प्रकाशक विद्वानों तथा पत्रकारिता के काम की अखंडता को बनाए रख सकते हैं, जिससे वापसी का जोखिम कम हो जाता है। उच्च नैतिक मानकों को बनाए रखने से न केवल व्यक्तिगत शोधकर्ताओं की विश्वसनीयता बढ़ती है, बल्कि व्यापक शैक्षणिक और वैज्ञानिक समुदाय की विश्वसनीयता भी मजबूत होती है।

प्रभाव (व्यक्तिगत, संस्थागत और सामाजिक): यदि हम वैज्ञानिक शोध और अकादिमिक प्रकाशन समुदाय पर वापसी/रिट्रैक्शन के प्रभाव की बात करें तो, ईमानदारी, दृढ़ता और पारदर्शिता की संस्कृति को बढ़ावा देकर, शोधकर्ता वापसी के जोखिम को कम कर सकते हैं, अपनी प्रतिष्ठा की रक्षा कर सकते हैं, और भरोसेमंद, पुनरुत्पादनीय विज्ञान की उन्नति में योगदान दे सकते हैं। जो शोधकर्ताओं, पत्रिकाओं, संस्थानों एवं व्यापक जनता सहित विभिन्न हितधारकों को प्रभावित करता है। इसके परिणामों का विश्लेषण इस प्रकार से किया जा सकता है:

वैज्ञानिक समुदाय पर प्रभाव

- विश्वसनीयता की हानि: वापसी से वैज्ञानिक साहित्य में विश्वास कम होता है, खासकर यदि वे उच्च-प्रोफ़ाइल पत्रिकाओं या ग्राउंडब्रेकिंग अध्ययनों से संबंधित हों।
- प्रगति पर प्रभावः वापसी से पहले त्रुटिपूर्ण शोध को दोहराने या उस पर निर्माण करने में संसाधन और समय दोनों बर्बाद होते हैं।
- उन्नत जांच: प्रकाशित निष्कर्षों के बारे में संदेह बढ़ने से अधिक कठोर सहकर्मी

- समीक्षा तथा पुनरावृत्ति प्रयास को बढ़ाया जाए।
- अखंडताः की पुनः पुष्टिः जब पारदर्शिता से रिट्रेक्ट/वापसी की जाती है, तो इससे स्व-संशोधन प्रकृति विज्ञान को सुदृढ़ करने का बल मिलता है।

2. शोधकर्ताओं पर प्रभाव (लेखकों)

- प्रतिष्ठा को नुकसान: रिट्रेक्शन / वापसी से लेखकों की विश्वसनीयता को नुकसान पहुंच सकता है, जिससे फंडिंग, सहयोग या भविष्य में प्रकाशन के अवसर प्राप्त करना कठिन हो जाता है।
- व्यवसायिक परिणाम: कदाचार में लिप्त को नौकरी छूटने, अनुदान खोने या शैक्षणिक समुदाय से बहिष्कार का सामना करना पड़ सकता है।
- उत्पादकता में कमी: वापस लिए गए काम पर खर्च किया गया समय और प्रयास अक्सर अप्रतिदेय होता है।
- कानूनी और वित्तीय नुकसान: नैतिक उल्लंघन या कानूनी समस्याओं से उत्पन्न वापसी से मुकदमे और जुर्माने हो सकते हैं।

3. साथी शोधकर्ताओं और सहयोगियों पर प्रभाव

- साहचर्य द्वारा अपराध: सह-लेखकों को प्रतिष्ठा संबंधी क्षति हो सकती है, भले ही वे कदाचार के लिए सीधे तौर पर जिम्मेदार न हों।
- कठोर जांच प्रक्रिया: सहयोगियों को अपने काम की गहन जांच का सामना करना पड़ सकता है, जिससे पेशेवर संबंधों में तनाव पैदा हो सकता है।

4. संस्थाओं पर प्रभाव

- प्रतिष्ठा को नुकसान: वापस लिए गए कार्य से जुड़े विश्वविद्यालयों या शोध संस्थानों को जांच का सामना करना पड़ सकता है, जिससे वित्त पोषण और सहयोग के लिए उनकी माँग कम होती है।
- निगरानी में बढ़ोत्तरी: संस्थाओं को सख्त निगरानी नीतियों को लागू करने की आवश्यकता हो सकती है, जिससे प्रशासनिक लागत बढ़ सकती है।
- **फंडिंग की हानि:** अनुदान प्रदाता फंडिंग वापस ले सकते हैं और प्रतिबंध भी लगा सकते हैं।

5. जर्नल्स पर प्रभाव

- विश्वसनीयता की समस्याः जो जर्नल्स अपने शोध-पत्र वापस ले लेती है, उसकी प्रतिष्ठा पर प्रश्न चिह्न लग सकता है और उसे अपर्याप्त सहकर्मी समीक्षा प्रक्रियाओं वाला माना जा सकता है।
- इम्पैक्ट फैक्टर पर प्रभाव: वापसी से जर्नल के उद्धरण मीट्रिक एवं समग्र प्रतिष्ठा में कमी आ सकती है।
- लागत और प्रयास: वापसी की जांच और प्रबंधन के लिए समय, धन और कानूनी परामर्श सहित महत्वपूर्ण संसाधनों की आवश्यकता होती है।

6. सार्वजनिक विश्वास पर प्रभाव

• विज्ञान पर विश्वास में गिरावट: विशेष रूप से चिकित्सा या जलवायु विज्ञान जैसे क्षेत्रों में उच्च-स्तरीय वापसी, अनुसंधान की विश्वसनीयता के बारे में संदेह को बढ़ावा दे सकती है।

- गलत सूचना का प्रसार: वापसी के बाद भी, त्रुटिपूर्ण निष्कर्ष प्रसारित होते रह सकते हैं, खासकर यदि मीडिया या सोशल प्लेटफॉर्म द्वारा उन्हें बढ़ा-चढ़ाकर पेश किया जाए।
- विलंबित समाधानः चिकित्सा, सार्वजनिक स्वास्थ्य या प्रौद्योगिकी जैसे क्षेत्रों में भ्रामक निष्कर्ष प्रगति में बाधा डाल सकते हैं और महत्वपूर्ण समाधानों में देरी हो सकती हैं।

7. अनुसंधान वित्तपोषण पर प्रभाव

- संसाधन आवंटन संबंधी चिंताएँ: वापसी से निधि आवंटन में संभावित अक्षमताओं का संकेत मिलता है, जिसके कारण अनुदान प्रदाता सख्त मूल्यांकन मानदंड लागू कर सकते हैं।
- सख्त निगरानी: अनुदान देने से पहले और बाद में वित्तपोषण एजेंसियों को अधिक विस्तृत औचित्य तथा प्रगति रिपोर्ट या पुनरुत्पादन जांच की आवश्यकता हो सकती है।

8. रिट्रेक्शन/वापसी के सकारात्मक परिणाम

- बेहतर मानकः वे पत्रिकाओं और शोधकर्ताओं को सख्त नैतिक और पद्धतिगत मानकों को अपनाने के लिए प्रोत्साहित करेगें।
- स्व-सुधार तंत्र: वापसी, विज्ञान की त्रुटियों की पहचान करने और उन्हें सुधारने की क्षमता को उजागर करती है, जिससे वैज्ञानिक रिकॉर्ड की अखंडता बनी रहती है।
- **कदाचार के बारे में जागरूकता:** प्रचारित वापसी से साहित्यिक चोरी,

मनगढ़ंत कहानी और हितों के टकराव जैसे मुद्दों के बारे में जागरूकता बढ़ती है, तथा निवारक उपायों को बढ़ावा मिलता है।

- सहकर्मी समीक्षा को मजबूत बनानाः वापसी से अक्सर सहकर्मी समीक्षा प्रक्रिया और जर्नल नीतियों में सुधार होता है।
- अधिक पारदर्शिताः वापसी से त्रुटियों के बारे में खुली बातचीत को बढ़ावा मिलता है, जिससे एक ऐसी संस्कृति को बढ़ावा मिलता है जहाँ गलतियों को स्वीकार करना सामान्य बात है।
- शैक्षिक मूल्य: वापसी पाठ्यक्रमों के लिए शिक्षण उपकरण के रूप में काम करती है, जो अनुसंधान में अखंडता के महत्व पर प्रकाश डालती है।
- वैज्ञानिक स्व-सुधार: स्व-सुधार प्रकृति का प्रमाण है, जो यह सुनिश्चित करती है कि ज्ञान का विकास सटीक सूचना के आधार पर हो।

वापसी के कुछ उल्लेखनीय उदाहरण

 वेकफील्ड वैक्सीन-ऑटिज्म अध्ययन (1998)

प्रकाशित: द लैंसेट वापस लिया गया: 2010

अध्ययनः

एंड्रयू वेकफील्ड और उनके साथियों ने एक शोधपत्र प्रकाशित किया जिसमें M M R वैक्सीन (खसरा, कण्ठमाला और रूबेला) और ऑटिज्म के बीच संबंध का सुझाव दिया गया। शोधपत्र में कहा गया कि वैक्सीन की वजह से आंतों में सूजन होती है, जिसके कारण ऑटिज्म जैसे विकास संबंधी विकार होते हैं।

प्रभाव:

- अध्ययन ने व्यापक रूप से टीकाकरण में हिचकिचाहट पैदा की, जिससे टीकाकरण दरों में गिरावट आई।
- खसरा और अन्य रोकथाम योग्य बीमारियों का प्रकोप वैश्विक स्तर पर बढ़ गया।

वापसी का कारण:

- जांच में मनगढ़ंत डेटा और गंभीर नैतिक उल्लंघनों का पता चला।
- वेकफील्ड के पास अघोषित वित्तीय हितों का टकराव था (जब वह एक वैकल्पिक टीका विकसित कर रहा था)।
- अन्य शोधकर्ता निष्कर्षों को दोहराने में विफल रहे, और अध्ययन का डिज़ाइन वैज्ञानिक रूप से त्रुटिपूर्ण था।

परिणाम:

- वेकफील्ड से उसका मेडिकल लाइसेंस छीन लिया गया।
- इस वापसी से वैज्ञानिक सहमित बहाल हुई कि टीके ऑटिज्म का कारण नहीं थे।
- यह घटना स्वास्थ्य सेवा में गलत सूचना की शक्ति के बारे में एक चेतावनी भरी कहानी बनी।
- 2. रेनहार्ट-रोगॉफ आर्थिक अध्ययन (2010, संशोधित 2013) पत्रिका: अमेरिकन इकोनॉमिक रिव्यू सुधार का कारण (वापसी नहीं):
 - अध्ययन में दावा किया गया कि उच्च ऋण स्तर आर्थिक विकास को नकारात्मक

- रूप से प्रभावित करते हैं, जिससे वैश्विक मितव्ययिता नीतियों पर असर पड़ता है।
- स्नातक छात्रों को बाद में एक्सेल डेटासेट में कोडिंग त्रुटियाँ मिलीं।

परिणाम:

पत्रिका ने शोधपत्र को वापस लेने के बजाय सुधार जारी किया क्योंकि त्रुटियाँ निष्कर्षों को पूरी तरह से अमान्य नहीं करती थीं।

सबकः

जब त्रुटियाँ इतनी गंभीर नहीं होतीं कि समग्र निष्कर्षों को कमज़ोर कर दें, तो सुधार शोध की अखंडता को बनाए रख सकते हैं।

3. STAP सेल्स स्कैंडल (2014) प्रकाशित: नेचर वापस लिया गया: 2014 अध्ययन:

> हारुको ओबोकाटा (Haruko Obokata) और उनकी टीम ने दावा किया कि उन्होंने प्लुरिपोटेंट स्टेम सेल (किसी भी प्रकार की कोशिका बनने में सक्षम) बनाने की विधि की खोज की है, जिसके लिए कोशिकाओं को केवल एसिड बाथ जैसे तनाव के संपर्क में लाना होगा। स्टिमुलस-ट्रिगर एकिजिशन ऑफ प्लुरिपोटेंसी (STAP) के नाम से जानी जाने वाली इस अभूतपूर्व विधि ने पुनर्योजी चिकित्सा में क्रांति लाने का वादा किया।

प्रभाव:

- इस खोज को स्टेम सेल अनुसंधान में एक बडी सफलता के रूप में सराहा गया।
- ओबोकाटा रातोंरात वैज्ञानिक सेलिब्रिटी बनगए।

वापसी का कारणः

- अन्य वैज्ञानिक परिणामों को दोहरा नहीं सके।
- शोधपत्र में मनगढ़ंत छवियाँ और हेरफेर किया गया डेटा पाया गया।
- RIKEN संस्थान (जहाँ ओबोकाटा काम करते थे) द्वारा की गई आंतरिक जाँच में कदाचार की पृष्टि हुई।

परिणाम:

- इस वापसी ने ओबोकाटा के करियर को बुरी तरह से नुकसान पहुंचाया।
- उनके एक विरष्ठ सहकर्मी योशिकी सासाई (Yoshiki Sasai) द्वारा जांच के दौरान दुखद रूप से आत्महत्या कर ली गई।
- इस मामले ने उच्च प्रभाव वाली वैज्ञानिक खोजों में पुनरुत्पादकता और अखंडता के महत्व पर जोर दिया।

- 4. कोविड-19 हाइड्रोक्सीक्लोरोक्कीन अध्ययन (2020) जर्नल: द लैंसेट वापसी का कारण:
 - शोधपत्र में दावा किया गया था कि हाइड्रोक्सीक्लोरोक्कीन के कारण कोविड-19 रोगियों में मृत्यु दर बढ़ गई है।
 - डेटा विसंगतियों के सामने आने और लेखकों द्वारा डेटा स्रोत की पुष्टि न कर पाने के बाद वापसी हुई।

परिणामः

शीघ्र वापसी से उपचार के रूप में हाइड्रोक्सीक्लोरोकीन के व्यापक पैमाने पर गलत उपयोग को रोकने में मदद मिली।

सबकः

महामारी अनुसंधान जैसे तेज़ गति वाले क्षेत्रों में, सार्वजनिक स्वास्थ्य जोखिमों को रोकने के लिए कठोर डेटा सत्यापन महत्वपूर्ण है।

नकारात्मक प्रभाव को कम करने की रणनीतियाँ

- 1. जिम्मेदार संचार: सुनिश्चित करें कि मीडिया और शोधकर्ता गलत सूचना का प्रतिकार करने के लिए वापसी नोटिस को प्रभावी ढंग से प्रसारित करें।
- 2. शिक्षित करण: समस्याओं को रोकने के लिए शोधकर्ताओं को नैतिक प्रथाओं और मजबूत कार्य प्रणालियों में प्रशिक्षिण प्रदान करें।
- 3. अप्रत्याशित शोध परिणाम: उन शोध परिणामों को भी प्राथमिकता दी जाए या प्रकाशित किया जाए, जिनके परिणाम सकारात्मक नहीं रहे हों।
- 4. पारदर्शिताः विश्वसनीयता बनाए रखने के लिए पत्रिकाओं को, वापसी के कारणों को स्पष्ट रूप से बताना चाहिए।
- 5. प्रकाशन पूर्व समीक्षाः समस्याओं की शीघ्र पहचान के लिए प्रकाशित कार्य की निरंतर जांच को प्रोत्साहित करें।

वापसी का प्रभाव

- 1. लेखकों के लिए: विश्वसनीयता की हानि और प्रतिष्ठा को नुकसान।
- 2. पित्रकाओं के लिए: पित्रका की प्रतिष्ठा और विश्वसनीयता पर नकारात्मक प्रभाव।
- 3. विज्ञान के लिए: वापसी का उद्देश्य अविश्वसनीय या अनैतिक कार्य को हटाकर वैज्ञानिक रिकॉर्ड की अखंडता को बनाए रखना है।
- 4. संस्थान के भीतर आंतरिक समीक्षा आयोजित करें।

जर्नल से शोधपत्र रिट्रेक्शन/वापसी की पहल: यहाँ यह स्पष्ट करना उचित होगा कि वापसी/ सुधार बेशक, किसी लेख को वापस लेना, खासकर जब यह किसी ईमानदार गलती के कारण हो, भावनात्मक रूप से कठिन काम होता है। इसलिए ज्यादातर जर्नल में आपको इस प्रक्रिया में मार्गदर्शन करने के लिए दिशा-निर्देश होते हैं। हालाँकि वे अलग-अलग हो सकते हैं, लेकिन सामान्य अपेक्षाओं में शामिल हैं: 1. स्वयं लेखक के द्वारा 2. संपादकों के द्वारा; 3. तीसरे पक्ष की शिकायत पर

की पहल किसने की स्वयं लेखक के द्वारा, संपादकों के समूह द्वारा या फिर किसी तीसरे पक्ष की शिकायत पर। बेशक, किसी लेख को वापस लेना, खासकर जब यह किसी ईमानदार गलती के कारण हो, भावनात्मक रूप से कठिन काम होता है। इसलिए ज़्यादातर जर्नल में आपको इस प्रक्रिया में मार्गदर्शन करने के लिए दिशा-निर्देश होते हैं। हालाँकि वे अलग-अलग हो सकते हैं, लेकिन सामान्य अपेक्षाओं में शामिल हैं: 1. स्वयं लेखक के द्वारा 2. संपादकों के द्वारा; 3. तीसरे पक्ष की शिकायत पर।

सबसे पहले, लेखकों, सभी सह-लेखकों को त्रुटि या वापसी के कारण के बारे में स्वयं सूचित करें। अगर स्व-वापसी संबंधी दिशा-निर्देश ऑनलाइन रुप में आसानी से नहीं मिलते हैं, तो संपादक से पूछें कि उनके दिशा-निर्देश क्या हो सकते हैं। अगर ज़रूरी हो, तो आप कानूनी सलाह भी ले सकते हैं। दूसरा, जर्नल के संपादकीय बोर्ड लेखकों से संपर्क करके वापसी का कारण जानें। तीसरा कोई वैज्ञानिक समुदाय आपके डाटा अथवा परिणामों को गलत साबित करता है या आपके द्वारा किए गए परीक्षणों को प्रश्न के दायरे में लाता है, तो वापसी या सुधार की पूर्ण संभावना बन जाती है।

उदाहरण स्वरूप जब एल्सेवियर को किसी लेख को वापस लेने का सामना करना पड़ता है, तो वह इन दिशा-निर्देशों का पालन करता है:

- "वापसी: (लेख का शीर्षक)" जब शीर्षक वाला एवं लेखकों और/ या संपादक द्वारा हस्ताक्षरित वापसी का एक नोट जर्नल के किसी अंक में प्रकाशित किया जाता है, तो जर्नल के इलेक्ट्रॉनिक संस्करण में, लेख के लिए एक लिंक बनाया जाता है।
- लेख के ऑनलाइन संस्करण के साथ, लेख से पहले एक स्क्रीन दिखाई देगी, जिसमें वापसी का नोट होता है।
- मूल पेपर या लेख अपरिवर्तित रहता है, सिवाय किसी भी पीडीएफ कॉपी पर "वॉटरमार्क" के, जो दर्शाता है कि लेख को "वापस ले लिया गया है।" पेपर का कोई भी HTML संस्करण हटा दिया जाता है।

वापसी और सुधार अद्यतन सूचनाः

अब बात करेंगे कि वापस लिए गए शोधपत्रों का पता लगाने और वापस लिए जाने वाले घोटालों पर अद्यतन सूचना कहाँ से और कैसे प्राप्त करें? इसके लिए रिट्रेक्शन वॉच (Retraction Watch) एक ब्लॉग है जो वैज्ञानिक शोधपत्रों के वापस लिए जाने और संबंधित विषयों पर रिपोर्ट करता है। यह ब्लॉग अगस्त 2010 में लॉन्च किया गया था

और इसे विज्ञान लेखक इवान ओरांस्की (Ivan Oransky) (पूर्व उपाध्यक्ष एवंसंपादक मेडस्केप) <mark>और एडम मार्कस</mark> (Adam Marcu) (गैस्ट्रोएंटरोलॉजी और एंडोस्कोपी न्यूज़ के संपादक) ने वैज्ञानिक शोध में पारदर्शिता और जवाबदेही को बेहतर बनाने के लिए निर्मित किया था । इसका मूल संगठन सेंटर फॉर साइंटिफिक इंटीग्रिटी है, जो एक अमेरिकी गैर-लाभकारी संगठन है तथा वापस लिए गए शोधपत्रों के लिए एक प्रासंगिक उपकरण है। ये अनुमानित 17,000 वापस लिए गए शोधपत्रों का डेटाबेस है। ब्लॉग नियमित रूप से उन शोधपत्रों और लेखकों के बारे में अपडेट करता है जिन्हें वापस लिया गया है या वापस लिए जाने वाले हैं। (https://retractiondatabase.org/Retracti onSearch.aspx?) यह डेटाबेस वापसी/सुधार का पता लगाने का एक उपकरण एवं डेटाबेस दोनों है कि क्या कोई शोधपत्र वापस लिया गया है। खोज परिणामों में जर्नल, लेखक और वापस लिए जाने के कारण दिए गए हैं।

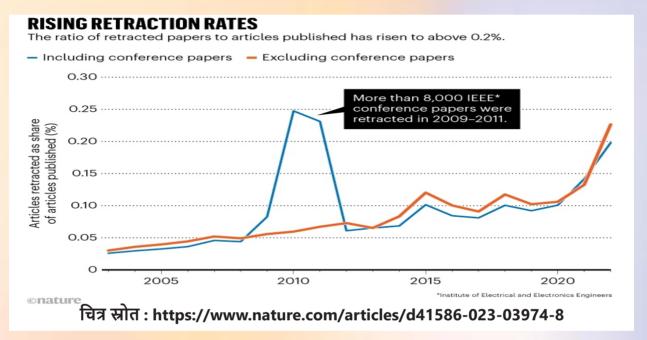
हाल के अध्ययनों से पता चलता है कि रिट्रेक्शन की दर वैश्विक रूप से तेजी से बढ़ी है—उदाहरण के लिए, यूरोपीय बायोमेडिकल प्रकाशनों में वर्ष 2000 से 2020 के दौरान प्रति 100,000 प्रकाशनों पर रिट्रेक्शन की संख्या 10.7 से बढ़कर 44.8 हो गई है (SpringerLink)। भारत में, वर्ष 1990–2024 के दौरान Web of Science में इंडेक्स किए गए 3,162 रिट्रेक्टेड प्रकाशनों का विश्लेषण इस वृद्धि का प्रमाण है, जिसमें प्लैगरिज़्म और पीयर-रिव्यू में हेरफेर प्रमुख कारण हैं (publications.drdo.gov.in)। रिट्रेक्शन की बढ़ती प्रवृत्ति इस बात की ओर संकेत है कि वैज्ञानिक समुदाय में नैतिकता, दोष


चित्र स्रोत : https://retractiondatabase.org/RetractionSearch.aspx?)

पहचान और सुधार की प्रक्रियाएं और अधिक सुदृढ़ करने की आवश्यकता है।

द हिंदू (24 सितंबर 2024 में प्रकाशित) के अनुसार, "रिट्रेक्शन क्या हैं और वे क्यों महत्वपूर्ण हैं?" शीर्षक के तहत छपे एक लेख में "रिट्रेक्शन वॉच" डेटाबेस के अनुसार, लखनऊ के एक संस्थान में एक भारतीय वैज्ञानिक ने 45 रिट्रेक्शन दर्ज किए हैं। इसमें यह भी कहा गया है कि कोलकाता के एक विश्वविद्यालय में एक अन्य शोधकर्ता ने एक वर्ष में 300 वैज्ञानिक शोधपत्र प्रकाशित किए, जो लगभग एक दिन में एक शोधपत्र है और असंभव है। इस व्यक्ति के छह शोधपत्र वापस लिए गए, जिनमें रसायन विज्ञान और वायरोलॉजी सहित कई विषय शामिल हैं। शोध कदाचार की समस्या भारत में बिगड़ने के बावजूद दुनिया भर में शोध पत्रों को वापस लेना आम बात होती जा रही है।

रिट्रेक्शन एक ऐसी प्रक्रिया है जो तब शुरू होती है जब किसी अकादिमक जर्नल में प्रकाशित वैज्ञानिक शोधपत्र में इतनी खामियां पाई जाती हैं कि उसे वैज्ञानिक साहित्य से हटा दिया जाना चाहिए। अकादिमक समुदाय अक्सर तब समझदारी से काम लेता है जब किसी शोधपत्र को किसी ईमानदार गलती के लिए वापस लिया जाता है, लेकिन जब किसी शोधपत्र को जानबूझकर हेरफेर की गई सामग्री के कारण वापस लिया जाता है तो उसे माफ करना बहुत मुश्किल होता है। उदाहरण के लिए, हार्वर्ड विश्वविद्यालय के एक युवा कार्डियोलॉजी शोधकर्ता जॉन डार्सी के मामले ने वर्ष 1980 के दशक में अकादिमक समुदाय को चौंका दिया था। "गलत सूचना और झूठ" फैलाने के लिए उनके 80 से अधिक शोधपत्र वापस लिए गए थे।


नेचर न्यूज़, (12 दिसम्बर 2023 में प्रकाशित) के अनुसार, इस साल वापस लिए जाने वाले लेखों की संख्या में तेज़ी से वृद्धि हुई है। सत्यनिष्ठा/ प्रामाणिकता सत्यनिष्ठा विशेषज्ञों का कहना है कि यह तो केवल एक छोटा सा उदाहरण है। वर्ष 2023 में शोध लेखों के लिए जारी किए गए रिट्रेक्शन की संख्या 10,000 को पार कर गई है (जैसा की नीचे गए चित्र में दर्शाया गया है) - जो वार्षिक रिकॉर्ड तोड रही है - क्योंकि प्रकाशकों को फर्जी शोध पत्रों और सहकर्मी-समीक्षा / पीयर-रिव्यू धोखाधडी को साफ करने के लिए संघर्ष करना पड रहा है। नेचर के विश्लेषण में पाया गया है कि बड़े शोध-उत्पादक देशों में. सऊदी अरब, पाकिस्तान, रूस और चीन में पिछले दो दशकों में सबसे अधिक रिट्रेक्शन दरें रही हैं।

चित्र स्रोत: https://www.nature.com/articles/d41586-023-03974-8

वर्ष 2023 में वापस लिए गए लेखों में से अधिकांश हिंदवी (Hindawi) के स्वामित्व वाली पत्रिकाओं से थे, जो प्रकाशक विली (Wiley) की लंदन स्थित सहायक कंपनी है। इस साल अब तक, हिंदवी पत्रिकाओं ने 8,000 से अधिक लेखों को वापस लिया है, जिसमें "चिंता है कि सहकर्मी समीक्षा प्रक्रिया से समझौता किया गया है" और "प्रकाशन और सहकर्मी समीक्षा प्रक्रिया में व्यवस्थित हेरफेर किया गया", जैसे कारकों का हवाला दिया गया है, आंतरिक संपादकों और शोध-अखंडता के जासूसों द्वारा प्रेरित जांच के बाद, जिन्होंने हजारों पत्रों में असंगत पाठ और अप्रासंगिक संदर्भों के बारे में सवाल उठाए थे।

हिंदवी के अधिकांश रिट्रैक्शन विशेष अंकों से होते हैं: लेखों का संग्रह, जो प्रायः अतिथि संपादकों की देखरेख में होता है और जो घोटालेबाजों द्वारा कम गुणवत्ता वाले या दिखावटी शोध पत्रों को तेजी से प्रकाशित करने हेतु शोषण किए जाने के लिए कुख्यात हो गए हैं।

वापसी प्रक्रिया के चरण:

1. समस्या की पहचान

- ट्रिगर:
 - सहकर्मी समीक्षकों, पाठकों, लेखकों
 या संपादकों से चिंताएँ उत्पन्न हो
 सकती हैं।
 - समस्याओं में साहित्यिक चोरी, डेटा निर्माण, लेखकीय विवाद, नैतिक उल्लंघन या ईमानदार त्रुटियाँ शामिल हो सकती हैं।

 पबपीयर जैसे पोस्ट-पब्लिकेशन प्लेटफ़ॉर्म भी समस्याओं को उजागर कर सकते हैं।

2. प्रारंभिक जांच

- आंतरिक समीक्षाः
 - पत्रिका का संपादकीय बोर्ड चिंता की विश्वसनीयता को सत्यापित करने के लिए प्रारंभिक मूल्यांकन करता है।
 - लेखकों से आमतौर पर स्पष्टीकरण या स्पष्टीकरण देने के लिए संपर्क किया जाता है।

- चिंता की अभिव्यक्ति (वैकल्पिक):

 यदि मामला गंभीर है, लेकिन अनिर्णायक है, तो पत्रिका जांच जारी रहने तक पाठकों को सचेत करने के लिए चिंता की अभिव्यक्ति जारी कर सकती है।

3. औपचारिक जांच

- गहन समीक्षाः

- पत्रिका लेखकों के संस्थानों, वित्त पोषण निकायों या स्वतंत्र समीक्षकों के साथ सहयोग करती है।
- डेटा और निष्कर्षों की वैधता को सत्यापित करने के लिए बाहरी विशेषज्ञों से परामर्श किया जा सकता है।

- लेखक संवादः

 लेखकों को जवाब देने का मौका दिया जाता है। ईमानदारी से की गई गलती के मामले में, लेखक पूर्ण वापसी के बजाय सुधार का अनुरोध कर सकते हैं।

4. वापस लेने का निर्णय

- साक्ष्य के आधार पर परिणाम:

- यदि चिंताएँ प्रमाणित होती हैं और शोधपत्र के निष्कर्ष अमान्य हैं, तो पत्रिका वापस लेने की प्रक्रिया शुरू कर दी जाती है।
- यदि निष्कर्षों को अमान्य किए बिना त्रुटियों को सुधारा जा सकता है, तो इसके बजाय सुधार नोटिस जारी किया जाता है।

- COPE दिशा-निर्देश:

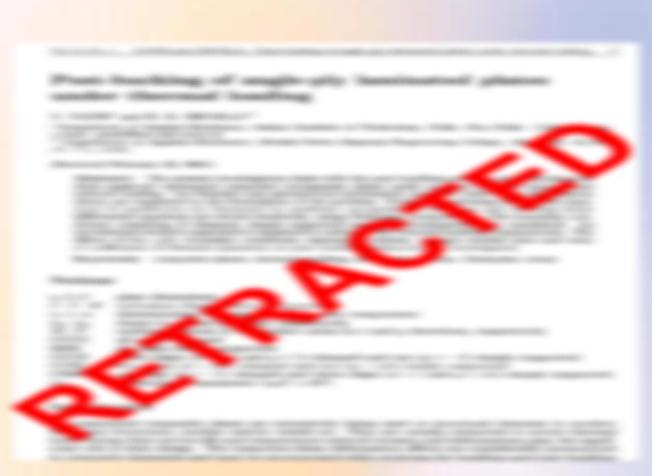
• निष्पक्षता और स्थिरता सुनिश्चित करने के लिए कई पत्रिकाएं प्रकाशन नैतिकता समिति (COPE: Committee on Publication Ethics) वापसी मानदंडों का पालन करती हैं।

5. वापसी नोटिस जारी करना

- स्पष्ट कथनः

- पत्रिका एक औपचारिक वापसी नोटिस प्रकाशित करती है जिसमें बताया जाता है:
- पेपर को क्यों वापस लिया गया (जैसे, कदाचार, डेटा त्रुटियाँ, साहित्यिक चोरी)।
- वापसी की पहल किसने की (लेखकों, संपादकों या तीसरे पक्ष ने)।

- वास्तविक पेपर का लिंक:


 वापसी नोटिस मूल पेपर से जुड़ा हुआ हो, जिससे पाठकों को समस्या के बारे में पता चल सके।

मूल पेपर अक्सर सुलभ रहता है, लेकिन वैज्ञानिक रिकॉर्ड को बनाए रखने के लिए इसे "Retracted" के रूप में चिह्नित किया जाता है।

6. इंडेक्सिंग और डेटाबेस अपडेट

शोध डेटाबेस में टैगिंग:

- PubMed, Scopus, Web of Science जैसे प्रमुख डेटाबेस पेपर को "Retracted" के रूप में चिह्नित किया जाता है।
- Cross Mark जैसे उपकरण यह सुनिश्चित करते हैं कि डिजिटल पहचानकर्ता भविष्य के पाठकों को वापसी का संकेत दें।

7. पोस्ट-रिट्रेक्शन मॉनिटरिंग

- निरंतर निगरानी:
 - पत्रिका वापस लिए गए पेपर के उद्धरणों की निगरानी कर सकती है और यदि पेपर का हवाला दिया जाना या उसका दुरुपयोग जारी रहता है, तो आगे की सूचना जारी कर सकती है।
 - संस्थाएँ संबंधित लेखकों के विरुद्ध प्रतिबंध भी लगा सकती हैं या अनुशासनात्मक कार्रवाई कर सकती हैं।

वापसी प्रक्रिया में जर्नल्स के सामने आने वाली चुनौतियाँ

 लेखक प्रतिरोध: लेखक वापसी पर विवाद कर सकते हैं, जिसके परिणामस्वरूप लंबी कानूनी लड़ाई या अपील हो सकती है।

- रिट्रेक्शन में देरी: जांच में महीनों या वर्षों का समय लग सकता है, जिसके दौरान त्रुटिपूर्ण पेपर आगामी शोध को प्रभावित कर सकता है।
- वापसी से जुड़ा कलंक: शोधकर्ताओं को डर है कि वापसी से उनके करियर को नुकसान पहुंचेगा, जिससे वे गलतियों को स्वीकार करने में अनिच्छुक हो जाएंगे।

वापसी प्रथाओं में सुधार कर आगे बढ़ना

• ईमानदारी से की गई गलतियों को सामान्य बनाना: पत्रिकाओं को इस बात पर जोर देना चाहिए कि ईमानदारी से की गई गलती के कारण वापस लिए गए लेख कैरियर को खत्म करने वाले नहीं हैं, बल्कि वे वैज्ञानिक प्रक्रिया का हिस्सा है।

- प्रीप्रिंट के उपयोग पर अधिक जोर: arXiv और bioRxiv जैसे प्लेटफ़ॉर्म शोधकर्ताओं को प्रारंभिक निष्कर्ष पोस्ट करने की अनुमति देते हैं, औपचारिक प्रकाशन से पहले समुदाय की प्रतिक्रिया आमंत्रित करते हैं।
- कृत्रिम मेधा और स्वचालित जांच: प्रिकाएं प्रकाशन से पहले साहित्यिक चोरी, छवि हेरफेर और डेटा विसंगतियों का पता लगाने के लिए क्रत्रिम मेधा का उपयोग करने लगी हैं।

निष्कर्षः

अकादमिक, वैज्ञानिक और पत्रकारिता संबंधी कार्यों की अखंडता और विश्वसनीयता बनाए रखने के लिए वापसी/सुधार एक आवश्यक तंत्र है। वे प्रकाशित रिकॉर्ड को सही करने का काम करते हैं जब महत्वपूर्ण समस्याएं जैसे कि शोध कदाचार, नैतिक उल्लंघन, ईमानदार त्रुटियाँ, डुप्लिकेट प्रकाशन, लेखक विवाद, सहकर्मी समीक्षा हेरफेर, या कानूनी उल्लंघन किसी अध्ययन की वैधता या विश्वसनीयता से समझौता करते हैं। जबकि वापसी के शोधकर्ताओं और पत्रिकाओं के लिए गंभीर परिणाम हो सकते हैं, वे नैतिक मानकों को बनाए रखने और विद्वानों के साहित्य की सटीकता सुनिश्चित करने के लिए आवश्यक हैं। वापसी को रोकने के लिए शोध की अखंडता, नैतिक अनुपालन, सटीक डेटा रिपोर्टिंग और जिम्मेदार लेखकीय प्रथाओं के प्रति प्रतिबद्धता की आवश्यकता होती है। कठोर नैतिक दिशा-निर्देशों का पालन करके, उचित अनुमोदन प्राप्त करके, डेटा की पृष्टि करके, अनावश्यक प्रकाशनों से बचकर तथा सहकर्मी समीक्षा में पारदर्शिता सुनिश्चित करके, शोधकर्ता एवं प्रकाशक वापसी की संभावना को कम कर सकते हैं। अंततः, अकादिमक ईमानदारी और नैतिक जिम्मेदारी की संस्कृति को बढ़ावा देने से न केवल व्यक्तिगत शोधकर्ताओं को बल्कि व्यापक वैज्ञानिक और विद्वान समुदाय को भी लाभ होता है। इन मानकों को बनाए रखने से प्रकाशित शोध में भरोसा मजबूत होता है, ज्ञान प्रसार की विश्वसनीयता बढ़ती है और दुनिया भर में संस्थानों एवं पत्रिकाओं की विश्वसनीयता बनी रहती है।

संदर्भ:

Bar-Ilan, J., & Halevi, G. (2017). Post retraction citations in context: A case study. Scientometrics, 113(1), 547–565.

Brainard, J., & You, J. (2018). What a massive database of retracted papers reveals about science publishing's 'death penalty'. Science, 362(6413), 395–398.

COPE (2019). Retraction guidelines. Committee on Publication Ethics.

Fanelli, D. (2018). Why growing retractions are (mostly) a good sign. PLoS Medicine, 15(12), e1002656.

SpringerLink. (2021). Retraction rates in biomedical journals: A 20-year review.

Nair, R. (2023). Ethical challenges in Indian research publications: Trends and remedies. Indian Journal of Ethics in Science, 5(2), 65–74.

Singh, A., Kumar, P., & Sharma, R. (2024). Retraction trends in Indian research: An analysis of Web of Science database (1990–2024). Annals of Library and Information Studies, 71(1), 45–56. Fang, F. C., Steen, R. G., & Casadevall, A. (2012). Misconduct accounts for the majority of retracted scientific publications. Proceedings of the National Academy of Sciences, 109(42), 17028-17033.

Grieneisen, M. L., & Zhang, M. (2012). A comprehensive survey of retracted

articles from the scholarly literature. PLoS ONE, 7(10), e44118.

Committee on Publication Ethics (COPE). (2022). Retraction Guidelines. https://publicationethics.org

Fanelli, D. (2019). Why Do Papers Get Retracted? Research Integrity Journal.

Mukherjee, B., & Tiwari, P. (2025). Assessing Retractions in Indian Science: An Analysis of Publications from the Past Three Decades Using the Web of Science Database. DESIDOC Journal of Library & Information Technology, 45(2), 141–149. publications.drdo.gov.in

Biomedical retractions due to misconduct in Europe: characterization and trends in the last 20 years. Scientometrics (2024). SpringerLink

Understanding the patterns and magnitude of life science publication Retractions in the last four decades. International Journal for Educational Integrity (2025). BioMed Central

Retracted articles in scientific literature: A bibliometric analysis from 2003 to 2022 using the Web of Science. Heliyon (2024). Cell

https://pmc.ncbi.nlm.nih.gov/articles/PMC3187237/#:~:text=Abstract,found%20to%20violate%20ethical%20guidelines

https://scientific-publishing.webshop.elsevier.com/research-process/paper-retraction-meaning-and-main-reasons/

https://www.minnpost.com/macro-micro-minnesota/2013/05/reinhart-

rogoff-economic-study-got-it-wrongand-so-did-political-react/

https://www.forbes.com/sites/jonentine/2014/06/24/profile-of-gilles-eric-seralini-author-of-republished-retracted-gmo-corn-rat-study/

https://www.science.org/doi/full/10.112 6/science.ade3742

https://en.wikipedia.org/wiki/Retraction_in_academic_publishing

https://researcher.life/blog/article/retractions-in-academic-publishing/

https://www.tandfonline.com/doi/full/1 0.1080/08989621.2024.2446558#d1e30 38

https://editverse.com/retraction-watcha-comprehensive-database-of-retracted -papers/

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31324-6/fulltext

https://www.cwauthors.com/article/What-is-article-retraction-in-academic-publishing

https://www.ugc.gov.in/e-book/ Academic%20and%20Research%20Book_WEB.pdf

https://www.cwauthors.com/article/What-is-article-retraction-in-academic-publishing

https://digitalcommons.csbsju.edu/cgi/viewcontent.cgi?article=1075&context=econ_pubs

https://www.gmoseralini.org/journal-

retraction-of-seralini-study-is-illicitunscientific-and-unethical/

https://www.tctmd.com/news/covid-19upset-researchers-retract-lancet-nejmpapers-hydroxychloroquine-aceiarbs

https://www.cwauthors.com/article/What-is-article-retraction-in-academic-publishing

https://www.enago.com/academy/article-retractions-affect-researchers/#:~: text=The%20publishing%20industry%20also%20suffers,issues%20related%20to%20academic%20misconduct.

https://researcher.life/blog/article/retractions-in-academic-publishing/#:~: text=Article%20retraction%20in%20academic%20publishing,journals%20in%20the%20scientific%20community.

https://pmc.ncbi.nlm.nih.gov/articles/PMC3187237/#:~:text=Abstract,found%20to%20violate%20ethical%20guidelines.

https://scientific-publishing.webshop. elsevier.com/research-process/paperretraction-meaning-and-main-reasons/ https://www.minnpost.com/macro-micro-minnesota/2013/05/reinhart-rogoff-economic-study-got-it-wrong-and-so-did-political-react/

https://www.forbes.com/sites/jonentine/2014/06/24/profile-of-gilles-eric-seralini-author-of-republished-retracted-gmo-corn-rat-study/

https://www.science.org/doi/full/10.112 6/science.ade3742

https://pmc.ncbi.nlm.nih.gov/articles/PMC3187237/#:~:text=Abstract,found%20to%20violate%20ethical%20guidelines.

https://scientific-publishing.webshop.elsevier.com/research-process/paper-retraction-meaning-and-main-reasons/

https://www.minnpost.com/macro-micro-minnesota/2013/05/reinhart-rogoff-economic-study-got-it-wrong-and-so-did-political-react/

https://www.forbes.com/sites/jonentine/2014/06/24/profile-of-gilles-eric-seralini-author-of-republished-retracted-gmo-corn-rat-study/

https://www.science.org/doi/full/10.112 6/science.ade3742


- लल्लू लाल द्वारा 1805 में प्रकाशित प्रेम सागर हिंदी में पहली प्रकाशित पुस्तक है।
- पहला हिंदी टाइपराइटर 1930 के दशक के दौरान लॉन्च किया गया था।
- 1913 में दादा साहब फाल्के द्वारा पहली हिंदी फिल्म, राजा हरिश्चंद्र रिलीज़ की गई थी।

हिंदी का ई-संसार

डॉ. काजल पाण्डे

प्रमुख तकनीकी अधिकारी सी-डैक, पुणे

'ई' शब्द आज आम आदमी की जरूरत बन गया है। प्रत्येक कार्य के लिए मुनष्य इलेक्ट्रॉनिक माध्यमों पर निर्भर है। वर्तमान समय में कोई भी काम हाथ से करने की अपेक्षा इलेक्ट्रॉनिक उपकरणों का उपयोग कर कार्य को त्वरित रूप से करने का चलन है। अपने दिन-प्रतिदिन के कार्यों में व्यक्ति अनेक इलेक्ट्रॉनिक माध्यमों का प्रयोग करता है, जैसे कंप्यूटर, मोबाइल, मेट्रो आदि। व्यक्ति जितना घरेलू उद्दश्यों के लिए इलेक्ट्रॉनिक साधनों पर निर्भर हैं, उतना ही बाहरी जीवन में रोजगार के लिए इलेक्ट्रॉनिक साधनों पर निर्भर हैं और साथ-साथ हिंदी भाषा भी इनके साथ कहीं ना कहीं जुडती जा रही है।

आज हिंदी हर क्षेत्र में अपने महत्व को दर्शा रही है। इसलिए यहाँ यह कहना बिल्कुल गलत नहीं होगा कि आज हमारा इलेक्ट्रॉनिक संसार, हिंदी का ई-संसार बन गया है। ई-शिक्षा, ई-प्रकाशन, ई-अनुवाद आदि क्षेत्रों में हिंदी का प्रयोग जिस तरह बढ़ता जा रहा है, उसे देखकर ऐसा लगता है कि वह दिन दूर नहीं, जब लोग हिंदी में अपने भविष्य की संभावनाएं तलाशेंगे।

ई-शिक्षा: समय के साथ ई-शिक्षा ने संपूर्ण शैक्षिक व्यवस्था में अपना स्थान बना लिया है। विश्व के सैंकडों छोटे-बडे केंद्रों में विश्वविद्यालय स्तर से लेकर शोध स्तर तक हिंदी के अध्ययन-अध्यापन की व्यवस्था में इंटरनेट, टेबलेट, मोबाइल एवं कंप्यूटर ने महत्वपूर्ण भूमिका निभाई है। विदेशों में हिंदी सीखने की ललक है जिसके फलस्वरूप पाठ्यक्रमों में श्रव्य-दृश्य सामग्री उपलब्ध कराई जाती है। भारत में इसकी उपयोगिता अभी पिछले कुछ सालों से ज्यादा महसूस की जा रही है। शिक्षण प्रणाली के तौर-तरीकों में बहुत तेजी से बदलाव हो रहा है। कोविड महामारी के बढते प्रभाव को रोकने के लिये लागू किए गए लॉकडाउन के कारण स्कूल, कॉलेज एवं विश्वविद्यालय की शिक्षा प्रतिकूल रूप से प्रभावित हो रही थी जिसके परिणामस्वरूप ई-कक्षाएं शुरू की गईं। अब वहीं भौतिक रुप से प्रदान की जाने ई-शब्दकोश में अंग्रेजी शब्द का हिंदी पर्याय तथा हिंदी शब्दों का वाक्य में अतिरिक्त प्रयोग देखा जा सकता है। इसकी विशेषता यह भी है कि आप अंग्रेजी एवं हिंदी शब्दों का उच्चारण भी सुन सकते है। यह एक बहुउपयोगी शब्दकोश है। व्यक्ति अपने अनुवाद संबंधित कार्यों में इस शब्दकोश की सहायता ले सकते हैं।

वाली शिक्षा तेजी से ई-शिक्षा की ओर अग्रसर हो रही है जिसमें अन्य सभी विषयों के साथ हिंदी को भी सुचारू रूप से पढ़ाया जा रहा है। यह अनुभव छोटे बच्चों की हिंदी की ऑनलाइन कक्षा को देखकर हुआ कि हिंदी की अध्यापिका को हिंदी का कितना ज्ञान है और वह किस तरीके से बच्चों को हिंदी पढ़ा रही है।

अब ई-शिक्षा के लिए कई एप भी उपलब्ध हैं। अभी कुछ दिन पहले ही दीक्षा एप के बारे में सुना, जिसमें विद्यालयों की सभी कक्षाओं के समस्त विषय उपलब्ध हैं। इससे आप अपने बच्चों को एक ही विद्यालय की पुस्तकों तक सीमित न रखकर अन्य विद्यालयों की पुस्तकों का भी ज्ञान दे सकते हैं।

ई-प्रकाशनः इलेक्ट्रॉनिक प्रकाशन में पुस्तकों, पत्रिकाओं के साथसाथ हिंदी जर्नल्स को अंतरराष्ट्रीय स्तर पर बढ़ावा देने के लिए अंतरराष्ट्रीय हिंदी जर्नल्स प्रकाशित किए जा रहे हैं जो इंटरनेट पर भी उपलब्ध हैं। हिंदी साहित्य का भी ई- प्रकाशन सराहनीय है। विश्व हिंदी सचिवालय, मॉरीशस की तरह और भी संस्थान हैं जो हिंदी में ई-पत्रिका, ई-साहित्य आदि के प्रकाशन को प्रोत्साहित करते हैं।

ई- लाइब्रेरी: ई- लाइब्रेरी सुविधा का उपयोग करके छात्र अपने अतिरिक्त समय की बचत करके आसानी से हिंदी भाषा संबंधित ई-पुस्तकें, ई-जर्नल आदि को डाउनलोड कर सकते हैं।

ई-शब्दकोशः शब्दकोशः कॉम जैसे ई-शब्दकोश में अंग्रेजी शब्द का हिंदी पर्याय तथा हिंदी शब्दों का वाक्य में अतिरिक्त प्रयोग देखा जा सकता है। इसकी विशेषता यह भी है कि आप अंग्रेजी एवं हिंदी शब्दों का उच्चारण भी सुन सकते है। यह एक बहुउपयोगी शब्दकोश है। व्यक्ति अपने अनुवाद संबंधित कार्यों में इस शब्दकोश की सहायता ले सकते हैं। तृतीय अखिल भारतीय राजभाषा सम्मेलन 14 और 15 सितंबर 2023 के दौरान अंग्रेजी-हिंदी के ३ लाख 51 हजार शब्दों के शब्दकोश "हिंदी शब्दसिंधु" और एक ई-ऑिफस ऐप की शुरूआत की गई थी।

ई-अनुवादः ट्रांसलेट.गूगल.कॉम जैसी निःशुल्क ई-अनुवाद सेवा अन्य भाषाओं के साथ-साथ हिंदी के लिए भी बहुउपयोगी है।

ई-व्यवसाय: ई-व्यवसाय इंटरनेट के माध्यम से व्यापार का संचालन किया जाता है जो पहले केवल अंग्रेजी में ही उपलब्ध था लेकिन समय की रफ्तार के साथ अब हिंदी भाषा में भी उपलब्ध है।

ई-मीडिया: भारत में नवभारत, हिंदुस्तान टाइम्स, दैनिक जागरण, नई दुनिया, इंडिया टुडे, जैसी पत्रिकाओं ने अपने ई-हिंदी इंटरनेट संस्करण निकाले हैं। यह हिंदी की ही ताकत है जिसने तमाम अखबारों एवं पत्र-पत्रिकाओं को अपने सभी अंकों को इंटरनेट पर जारी करने के लिए मजबूर कर दिया है। विदेशों में प्रवासी भारतीयों

द्वारा हिंदी-पत्रकारिता के विकास की दिशा में सूचना प्रौद्योगिकी के माध्यम से महत्वपूर्ण कार्य हुआ है। समय-समय पर हिंदी पत्रकारिता के उन्नयन के लिए पत्र-पत्रिकाओं का इंटरनेट पर ऑनलाइन प्रकाशन आरम्भ किया जा रहा है। इनके मूल में हिंदी पत्रकारिता के प्रति निष्ठा एवं अंतर्राष्ट्रीय विकास की भावना निहित है। बीबीसी हिंदी एक अन्तरराष्ट्रीय समाचार सेवा है। वर्तमान में ये सेवा रेडियो के साथ-साथ वेबसाइट एवं सोशल- साइटों पर भी संचालित हो रही है। प्रतिदिन हजारों लोग बीबीसी हिंदी वेबसाइट पर आते हैं। यह आंकड़ा बहुत तेज़ी से बढ़ रहा है। अब हर किसी के हाथ में इंटरनेट है और वे खबरों के लिए अखबारों के पन्ने पलटने के बजाय किसी वेबसाइट पर नजर डालना ज्यादा उचित समझते

हैं। खास बात यह है कि इसमें हिंदी वेब मीडिया ने भी अपनी मजबूत उपस्थिति दर्ज कराई है। अंतरराष्ट्रीय मीडिया ने हिंदी भाषा का सशक्तीकरण तो किया ही है साथ ही मीडिया के अंतरराष्ट्रीय मंच पर हिंदी का व्यापक प्रसार भी किया है। इलेक्ट्रॉनिक मीडिया के साधनों ने इस दिशा में सकारात्मक भूमिका निभाई है।

ई-मेल: यूनीकोड फॉन्ट की सहायता से आज ई-मेल अथवा ई-चैटिंग के द्वारा आसानी से हिंदी में संवाद किया जा सकता है।

ई-मीटिंग: माननीय प्रधानमंत्री श्री नरेन्द्र मोदी जी के हिंदी भाषा के प्रति सम्मान को देखते हुए आज कई सरकारी कार्यालयों के साथ-साथ प्राइवेट कार्यालयों में भी हिंदी भाषा को सम्मान देते हुए ऑनलाइन मीटिंग हिंदी में भी होने लगी हैं।

ई-सिनेमा: सूचना प्रौद्योगिकी के युग में हिंदी फिल्मों तथा गानों ने विश्व में हिंदी के प्रसार में अप्रतिम योगदान दिया है। हिंदी सिनेमा अपने संवादों एवं गीतों के कारण विश्व स्तर पर लोकप्रिय

विदेशों में छात्रों को हिंदी फिल्में देखकर तथा हिंदी फिल्मी गानें सुनकर हिंदी सीखने में काफी मदद मिलती है। जिन सेटेलाइट चैनलों ने भारत में अपने कार्यक्रमों का आरम्भ केवल अंग्रेजी भाषा से किया था; उन्हें अपनी भाषा नीति में परिवर्तन करना पड़ा। अब स्टार प्लस, जी.टी.वी., जी न्यूज, स्टार न्यूज, डिस्कवरी, नेशनल ज्योग्राफिक आदि टी.वी. चैनल अपने कार्यक्रम हिंदी में दे रहे हैं

हो रहा है। विदेशों में छात्रों को हिंदी फिल्में देखकर तथा हिंदी फिल्मी गानें सुनकर हिंदी सीखने में काफी मदद मिलती है। जिन सेटेलाइट चैनलों ने भारत में अपने कार्यक्रमों का आरम्भ केवल अंग्रेजी भाषा से किया था; उन्हें अपनी भाषा नीति में परिवर्तन करना पड़ा। अब स्टार प्लस, <mark>जी.टी.वी., जी न्यूज, स्टार न्यूज, डिस्कवरी,</mark> नेशनल ज्योग्राफिक आदि टी.वी. चैनल अपने कार्यक्रम हिंदी में दे रहे हैं। दक्षिण पूर्व एशिया तथा खाडी के देशों के कितने दर्शक इन हिंदी कार्यक्रमों को देखते हैं। अभी तक हिंदी नेपाल, भुटान, पाकिस्तान, अफगानिस्तान, श्रीलंका और म्यांमार तक ही सीमित थी, लेकिन अब एशिया से बाहर यूरोप में भी हिंदी भाषा को भरपूर सम्मान मिल रहा है। जर्मनी में भी इसकी ललक पहले से ज्यादा बढी है।

आज भारतीय भाषाओं में सर्वाधिक फिल्में बनती हैं। इनमें भी हिंदी में सबसे अधिक फिल्में तैयार हो रही है। आज सभी चैनल तथा फिल्म निर्माता अंग्रेजी कार्यक्रमों और फिल्मों को हिंदी में डब करके प्रस्तुत करने लगे हैं। जुरासिक पार्क जैसी प्रसिद्ध फिल्म को भी हिंदी में डब किया गया था। इसके हिंदी संस्करण ने जितने पैसे कमाए उतने अंग्रेजी संस्करण ने पूरे विश्व में नहीं कमाए थे।

अनेक देशों में हिंदी कार्यक्रम प्रसारित किए जा रहे हैं, जिनमें बीबीसी, जर्मनी के डॉयचे वेले, जापान के एनएचके वर्ल्ड एवं चीन के चाइना रेडियो इंटरनेशनल की हिंदी सेवा विशेष रूप से उल्लेखनीय हैं।

यूरोप के देशों में कोलोन, बीबीसी, ब्रिटिश रेडियो, सनराइज, सबरंग जैसे हिंदी सेवा कार्यक्रमों को हिंदी प्रेमी बड़े चाव से सुनते हैं। यूरोप के देशों में ऐसी गायिकाएँ हैं जो हिंदी फिल्मों के गाने गाती हैं तथा स्टेज शो करती हैं।

सन्1995 के बाद टेलिविजन के प्रसार के कारण अब विश्व के प्रत्येक भूभाग में हिंदी फिल्मों तथा हिंदी फिल्मी गानों की लोकप्रियता सर्वविदित है।

ई-सम्मेलनः भारत के वर्तमान प्रधानमंत्री श्री नरेंद्र मोदी जी का हिंदी प्रेम देखिए कि वे भोपाल में आयोजित हुए अंतरराष्ट्रीय हिंदी सम्मेलन में पहुंचे। वैसे तो उनकी मातृभाषा गुजराती है लेकिन वे मानते हैं कि हिंदी ने ही उन्हें भारत के लोगों से जुड़ने का मौका दिया। उन्हीं के शब्दों में, "मेरी भाषा हिंदी नहीं, लेकिन मैं सोचता हूं अगर मुझे हिंदी बोलना न आता, तो मैं लोगों तक कैसे पहुंचता।"

इस तरह के सम्मेलन अक्सर भारत से बाहर रहने वाले भारतीयों के लिए एक दूसरे से मिलने का

और अपनी धरती से जुड़े रहने का एक जरिया होते हैं। इस बार भारत में एप्पल, माइक्रोसॉफ्ट तथा गूगल जैसी बड़ी अंतरराष्ट्रीय कंपनियों की मौजूदगी खास रही। ये सभी कंपनियां हिंदी और अन्य भारतीय भाषाओं में निवेश कर रही हैं ताकि लोग अपनी भाषा में तकनीक का इस्तेमाल कर सकें। मोदी जी भी जल्द से जल्द हिंदी को पूरी तरह डिजिटल कर देना चाहते हैं। वे मानते हैं कि "हम डिजिटल वर्ल्ड से अपनी भाषाओं को जितना अधिक जोड़ेंगे, उतनी ही तेजी से उनका प्रसार होगा।"

इसी सिलसिले में प्रधानमंत्री श्री नरेंद्र मोदी जी फेसबुक प्रमुख मार्क जुकरबर्ग से अमेरिका में मिले। कहा जा सकता है कि यदि प्रधानमंत्री जी की योजना सफल रहती है, तो हिंदी भविष्य में एक मुख्य अंतरराष्ट्रीय भाषा के रूप में उभर सकती है।

ब्लॉगिंग: हिंदी की लोकप्रियता बढाने में इंटरनेट ब्लॉगिंग का अहम योगदान रहा है। आज के दौर में हिंदी में सामुदायिक ब्लॉगों के अलावा साहित्य, संस्कृति एवं सिनेमा जैसे विषयों पर भी कई ब्लॉग सक्रिय हैं। इन ब्लॉगों पर सामाजिक मुद्दों की भी खुब धूम रहती है। ब्लॉगिंग ने हिंदी में नई प्रतिभाओं को सामने लाने में अहम भूमिका अदा की है। प्रकाशकों और लेखकों की नई रचनाओं या विचारों को आम जनता तक पहुंचाने के लिए इंटरनेट सभी बाधाओं को खत्म करते हुए हिंदी को स्थापित कर रहा है। पहले कुछ सीमित विषय ही हिंदी में उपलब्ध थे लेकिन इंटरनेट ने उनका दायरा इतना बढ़ा दिया है कि उसकी कोई सीमा ही नहीं। अब हिंदी में लगभग हर विषय पर लिखने वालों की कोई कमी नहीं है। इंटरनेट पर हिंदी से संबंधित विषयों पर विचार-विमर्श के लिए भी अनेक ब्लॉग उपलब्ध हैं। हिंदी के प्रचार-प्रसार में इन ब्लॉगों की महत्त्वपूर्ण भूमिका है। इनमें से कुछ ब्लॉगों से हिंदी सीखने वाले छात्रों को व्याकरण, शब्द-प्रयोग आदि से संबंधित उपयोगी जानकारी

मिलती है। कुछ ब्लॉग ऐसे भी हैं जहाँ हिंदी के विद्वान इस भाषा के अनेक पक्षों पर विचार-विमर्श करते हैं।

सॉफ्टवेयर: माइक्रोसॉफ्ट ने वर्ष 1998 में वर्ड 2000 के दक्षिण पूर्व एशिया संस्करण में हिंदी को सीमित स्थान देकर हिंदी की शुरुआत की। टाइपिंग, फोंट, वेबसाइट (ई-लर्निंग, ई-कामर्स, ई-मेल, ई-मीडिया, ई-बैंकिंग, ई-प्रवेश, शब्दकोश, विश्वकोश, ब्लॉग, साहित्य, ई-बुक, मशीनी अनुवाद, ई-महाशब्दकोश, शब्दमाला, लिप्यंतरण, डेटा कनवर्टर, विभिन्न फॉण्टस, अक्षर-ब्रिज, इन, शब्द-ज्ञान, गोल्डेन-डिक्ट आदि), जैसे अनेक ऑनलाइन एवं ऑफलाइन साधन हिंदी में उपलब्ध हैं। विश्वबाजार की भाषा अंग्रेजी में हजारों नए हिंदी शब्दों ने प्रवेश किया है, जिन्हें ऑक्सफ़ोर्ड डिक्शनरी में स्थान मिल चुका है। इससे हिंदी के विश्वभाषा बनने के मार्ग में मदद मिल रही है। भाषाओं का यह अन्तर्मिश्रण बताता है कि हिंदी में भी शब्दों के प्रवेश को लेकर संशय और शुद्धता की रक्षणशील भावनाएँ बहुत उपादेय नहीं है। अनुवाद के लिए गूगल ट्रांसलेटर का भी प्रयोग बहुत सराहनीय है जिसके माध्यम से किसी भी भाषा के साथ हिंदी में किसी भी क्षेत्र से संबंधित अनुवाद प्राप्त कर सकते हैं। हिंदी सहित स्थानीय भाषाओं में काम करने के लिए सॉफ्टवेयर का अभाव अब खत्म हो चुका है। आजकल किसी भी साक्षर को कम्प्यूटर में हिंदी में अपना काम करते देखा जा सकता है।

विज्ञापनः जर्मन विमानन सेवा "लुफ्थांसा" का टीवी विज्ञापन भारतीय यात्रियों के साथ बेहतर

तरीके से जुड़ने का प्रयास करता है। कंपनी ने पहली बार केवल भारत के लिए विज्ञापन तैयार किया है और इस विज्ञापन में उड़ान के दौरान भारतीय भोजन एवं हिंदी फिल्मों को दिखाया गया है।

ई-डाक: आजकल डाक सेवा ने भी इलेक्ट्रॉनिक रूप अपना लिया है। व्यक्ति घर बैठे डाक सेवा की वेबसाइट खोलकर भेजी गई डाक या प्राप्त होने वाली डाक का ऑनलाइन विवरण देख सकता है हैं।

संस्कृतिः हिंदी भाषा एवं इसमें निहित भारत की सांस्कृतिक धरोहर इतनी सुदृढ़ और समृद्ध है कि इस ओर अधिक प्रयत्न न किए जाने पर भी इसकी भूमंडलीकरण की गति बहुत तेज है। लगभग हर देश में योग, ध्यान और आयुर्वेद के केंद्र खुल गए हैं जो दुनिया भर के लोगों को भारतीय संस्कृति की ओर आकर्षित करते हैं। ऐसी संस्कृति जिसे पाने के लिए हिंदी के रास्ते से ही पहुंचा जा सकता है।

हिंदी-वेबसाइट: विश्व मंच पर हिंदी वेबसाइटों का निर्माण किया जा रहा है। तकनीक एवं इंटरनेट के इस युग में माइक्रोसॉफ्ट, याहू, रेडिफ आदि विदेशी कंपनियों ने अपनी वेबसाइट पर हिंदी भाषा को स्थान दिया है। बी.बी.सी. ने भी <mark>पंजाबी एवं बांग्ला के साथ-साथ हिंदी में वेबसाइट</mark> विकसित की है। ई-कॉमर्स, ई-गवर्नेंस क्षेत्र में भी हिंदी का विकास हो रहा है। गूगल जैसा प्रचलित इंटरनेट सर्वर अंतर्राष्ट्रीय स्तर पर हिंदी प्रसार के क्षेत्र में अग्रणी भूमिका निभा रहा है। अंतर्राष्ट्रीय स्तर पर हिंदी ब्लॉगों के माध्यम से भी हिंदी का प्रचार प्रसार किया जा रहा है। 27 अगस्त 2014 को भारत सरकार ने हिंदी समेत देवनागरी लिपि वाली 8 भारतीय भाषाओं के लिए एक नया डॉट भारत डोमेन लॉन्च किया था। अब इंटरनेट पर कोई वेबसाइट अपना नाम देवनागरी लिपि में रखते हुए पीछे .com या .in जैसे डोमेन की जगह .भारत रख सकती है। जैसे registry.in को वेब ब्राउज़र में रजिस्ट्री.भारत लिखकर भी खोला जा सकता है। अब वेबसाइट के नाम देवनागरी लिपि का प्रयोग करने वाली भाषा हिंदी के साथ ही बोडो, डोगरी, कोंकणी, मैथिली, मराठी, नेपाली एवं सिंधी में भी रखे जा सकते हैं। श्री रिव शंकर प्रसाद, माननीय केंद्रीय मंत्री, संचार एवं सूचना प्रौद्योगिकी तथा कानून एवं न्याय ने .भारत डोमेन नाम का शुभारंभ करते हुए कहा, "यह पहल केवल 8 भाषाओं पर नहीं रुक जाएगी। मैंने विभाग से कहा है कि .भारत डोमेन सभी भारतीय भाषाओं में जल्द उपलब्ध होना चाहिए।" यकीनन वह दिन दूर नहीं जब जनमानस वेबसाइट एवं ई-मेल के पते भी हिंदी में उपयोग करने लगेगा।

आभासी कार्यक्रम: दिनांक 28 अक्टूबर 2023 को 'हिंदी में अभिव्यक्ति' पर विश्व हिंदी सचिवालय, मॉरीशस द्वारा आयोजित आभासी रूप सत्र में बहुत से प्रतिभागियों द्वारा भाग लिया गया। यह अत्यंत सारगर्भित आभासी सत्र था। इसमें वक्ताओं के तौर पर भिन्न भिन्न देश से लोग जुडे थे जैसे युगांडा, पूर्तगाल, ताजिकिस्तान। इस आभासी कार्यक्रम में माननीय प्रो. महावीर सरन जैन जी, प्रख्यात भाषा वैज्ञानिक ने भारत से जुडकर सभी को अपने विचारों से कृतज्ञ किया। युवा विद्यार्थी अपने भावों को कैसे व्यक्त करते हैं और शिक्षक कैसे उनकी अभिव्यक्ति में सुधार करते हैं, इस बारे में इस कार्यक्रम में चर्चा की गई। हिंदी भाषा को लेकर दूसरे देश में और दूसरे देश के लोगों का जो हिंदी भाषा के प्रति प्रेम एवं सम्मान का भाव है, वह देखकर और सुनकर कोई भी भावविह्वल हो जाए। और ये सब यकीनन हिंदी का अतर्राष्ट्रीय स्तर पर होने से संभव हुआ है।

वर्तमान समय, भारत और हिंदी के तीव्र एवं सर्वोन्मुखी विकास का द्योतन कर रहा है और सबसे यह अपेक्षा की जा रही है कि जो कोई जहाँ भी हैं, जिस क्षेत्र में भी कार्यरत हैं वहाँ ईमानदारी से हिंदी और देश के विकास में हाथ बटाएँ। मेट्रो: दिल्ली जैसे बड़े महानगर में सामान्य जन-जीवन में मेट्रो का जितना महत्व है उतना ही महत्व मैट्रो में होने वाली घोषणा का है, क्योंकि स्टेशन संबंधित सभी घोषणाएँ अंग्रेजी के साथ-साथ हिंदी भाषा में समान रूप से होती है। जिससे पता चलता है कि हिंदी किस प्रकार जनता के लिए महत्वपूर्ण होती जा रही है।

एयरपोर्टः विमान परिचारिका के साथ-साथ पायलट का हिंदी में बोलना और घोषणा करना देखकर और सुनकर उतना आश्चर्यजनक नहीं लगा जितना एयरपोर्ट पर हिंदी भाषा को अपनाते हुए हिंदी का डिजीटल रूप देखकर होता है। हैदराबाद एयरपोर्ट पर तीन भाषाओं में सारी सूचनाएँ डिजीटल रूप में उपलब्ध हैं – हिंदी, अंग्रेजी और तेलुगू। स्थानीय भाषा के साथ साथ हिंदी राजभाषा को भी अपनाया जा रहा है, यह देखना अच्छा लगता है। प्रधानमंत्री श्री नरेंद्र मोदी जी के आने से हिंदी भाषा का प्रयोग अब जगह-जगह दिखता है।

निष्कर्षतः कहा जा सकता है कि सूचना प्रौद्योगिकी के इस युग में आम जनता से लेकर अंतरराष्ट्रीय फलक पर ई-माध्यमों में हिंदी ने अपनी भूमिका खुद तय कर ली है। ई-माध्यमों के वर्चस्व के साथ-साथ इनमें हिंदी का वर्चस्व देखते ही बनता है और यकीनन ये हमारा अपनी भाषा के प्रति प्रेम ही है जो यह साबित करता है कि आज का संसार वाकई हिंदी का ई-संसार है।

संदर्भ ग्रंथ-

- https://www.sarita.in/society/development -of-hindi-in-our-society
- 2. https://m.bharatdiscovery.org/india
- 3. https://lgandlt.blogspot.com/२०१८/०४/ blog-post_५.html
- 4. https://www.jagran.com/sahitya/literaryworks-ξξδξ.html
- 5. https://hi.wikipedia.org/wiki

दवाओं पर उच्च तापमान का दुष्प्रभाव

मांगे राम क्लवंशी

वरिष्ठ फार्मासिस्ट, संस्थान चिकित्सालय भारतीय प्रौद्योगिकी संस्थान, रूड़की

एक दिन तपती दोपहर थी, लू के तेज थपेड़े चल रहे थे। सूरज मानो आग उगल रहा था, और सड़कें जैसे जल रही थीं। अस्पताल के सामने मेरी नजर एक आदमी पर पड़ी।

वह अपने स्कूटर की डिग्गी खोलकर उसमें कुछ रख रहा था। मैनें पास जाकर देखा, तो वे दवाइयों के पैकेट थे।

मैं तुरंत रुक गया और उसे टोकते हुए कहा, "भाईसाहब, इतनी गर्मी में स्कूटर की डिग्गी में दवाइयाँ रखना ठीक नहीं है। स्कूटर की डिग्गी का तापमान बहुत ज्यादा है, इससे दवाइयाँ खराब हो सकती हैं!"

वह चौंककर मेरी तरफ देखने लगा, फिर बोला, "अरे! यह तो मैंने सोचा ही नहीं... सच में, दवाइयाँ तो ठंडी जगह पर रखनी चाहिए।"

मैंने मुस्कुराकर कहा, "हाँ, बेहतर होगा कि आप इन्हें किसी ठंडी जगह या सामान्य तापमान में रखें अथवा किसी इंसुलेटेड बैग में ले जाएँ।"

उसने मेरी बात समझी, दवाइयाँ वापस बैग में डालीं और शुक्रिया अदा किया। मैं संतुष्टि के साथ आगे बढ़ गया, यह सोचते हुए कि छोटी-छोटी बातें कभी-कभी कितनी महत्वपूर्ण होती हैं। यदि इन पर ध्यान न दिया जाए, तो बड़ी परेशानी का कारण बन सकती हैं।

दवा के रख रखाव हेतु उच्च तापमान कितना उचित: दवाएँ बीमारियों के इलाज और रोकथाम में अत्यंत महत्वपूर्ण भूमिका निभाती हैं, लेकिन यदि इन्हें उचित तरीके से संग्रहीत नहीं किया जाए, तो इनकी प्रभावशीलता प्रभावित हो सकती है। दवा की स्थिरता और उसके असर को प्रभावित करने वाले सबसे महत्वपूर्ण कारकों में से एक है, " तापमान। अधिक तापमान से दवाओं की गुणवत्ता पर बुरा असर पड़ सकता है। अधिक तापमान एवं लू जहां मानव जीवन के लिए घातक साबित हो सकते हैं, वहीं जीवन रक्षक दवाओं के लिए भी घातक हो सकते हैं। कई दवाएं तापमान के प्रति बेहद संवेदनशील होती हैं,अत्यधिक गर्मी के संपर्क में आने पर वे अप्रभावी या हानिकारक भी हो सकती हैं। अगर दवा गर्मी के संपर्क में आई है, तो उसका रंग, बनावट या गंध बदल जाएगी और वह बेकार हो जाएगी, भले ही उसकी एक्सपायरी डेट न हुई हो।

भीषण गर्मी के महीनों में उच्च तापमान व्यावहारिक रूप से हर चीज को प्रभावित करता है, यहाँ तक कि दवाओं को भी। रोग नियंत्रण और रोकथाम केंद्र बताते हैं कि गर्मी और दवाओं के बीच निम्न मुख्य बातें होती हैं:

इंसुलिन, वैक्सीन, इनहेलर और अन्य दवाएँ गर्म मौसम में रखने के बाद उन्हें प्रयोग में लाने पर नुकसान पहुँचा सकती हैं या खराब हो सकती हैं।

कुछ दवाएँ त्वचा को धूप के प्रति अधिक संवेदनशील बना सकती हैं।

अधिकांश दवाओं को एक विशिष्ट तापमान सीमा 15°C और 25°C (59°F और 77°F) के बीच संग्रहीत करने के लिए डिजाइन किया जाता है और प्रत्येक दवा की भंडारण स्थिति निर्माता द्वारा दवा के पैक पर प्रदर्शित की जाती है। इसलिए मरीजों को अपनी दवाओं के लिए उचित रखरखाव की स्थितियों के बारे में पता होना चाहिए ताकि यह सुनिश्चित हो सके कि उन्हें पूर्ण चिकित्सीय लाभ प्राप्त हो।

चित्र: दवा के पैकेट पर दिए गए दिशा निर्देश

उच्च तापमान के संपर्क में आने से दवा का रासायनिक क्षरण हो सकता है, जिससे दवा की शक्ति और सुरक्षा कम हो सकती है। कुछ दवाएं, विशेष रूप से तरल फॉर्मूलेशन, इंसुलिन, टीके और कुछ एंटीबायोटिक्स, विशेष रूप से गर्मी के प्रति संवेदनशील होते हैं, जो उच्च तापमान के कारण कई प्रकार से प्रभावित हो सकती हैं:

1. बेअसर होना: गर्मी के कारण दवाओं में

- सक्रिय तत्व नष्ट हो सकते हैं, जिससे दवा कम प्रभावी हो जाती है।
- 2. संरचना में परिवर्तन: गर्मी से प्रेरित रासायनिक प्रतिक्रियाएं दवा की संरचना को बदल सकती हैं, जिससे यह संभावित रूप से हानिकारक हो सकती है।
- 3. भौतिक परिवर्तन: उच्च तापमान में दवा की गोलियाँ भंगुर या चिपचिपी हो सकती हैं, कैप्सूल नरम या कठोर हो सकते हैं और तरल दवाएं अलग हो सकती हैं या तलछट में जमा हो सकती हैं।
- 4. कम शेल्फ जीवन: उच्च तापमान के संपर्क में आने से दवाओं की अपेक्षित शेल्फ जीवन कम हो सकता है, जिससे समय से पहले उनकी समाप्ति हो सकती है।

चित्र: धूप के संपर्क में खराब होती दवाएं

दवा के उचित रखरखाव हेतु ध्यान देने योग्य बातें: यह सुनिश्चित करने के लिए कि दवाएँ उपयोग के समय प्रभावी और सुरक्षित रहें, मरीजों को निम्निलिखित आवश्यक भंडारण दिशानिर्देशों का पालन अवश्य करना चाहिए:

1. दवाओं को ठंडी एवं सूखी जगह पर रखें: दवाओं को सीधे सूर्य की रोशनी के संपर्क में आने वाले क्षेत्रों, जैसे खिड़की की चौखट या बाथरूम जैसी नमी वाली जगहों पर रखने से बचें।

- 2. आवश्यकतानुसार रेफ्रिज़रेटर का उपयोग करें: कुछ दवाओं, जैसे इंसुलिन और कुछ एंटीबायोटिक्स को रेफ्रिज़रेटर की आवश्यकता होती है। हमेशा लेबल की जांच करें या फार्मासिस्ट से परामर्श लें।
- 3. गर्म वातावरण में दवाएं छोड़ने से बचें: दवाओं को कभी भी खड़ी कार के अंदर, रसोईघर में रखे उपकरणों के पास, या रेडिएटर जैसे गर्मी स्रोतों के करीब न छोड़ें।
- 4. दवाओं को उनकी मूल पैकेजिंग में रखें: मूल पैकेजिंग दवा को पर्यावरणीय कारकों से बचाती है और महत्वपूर्ण भंडारण निर्देश प्रदान करती है।
- 5. समाप्ति तिथियों की निगरानी करें: किसी भी ऐसी दवा को त्याग दें जो उच्च तापमान के संपर्क में आई हो या लम्बे समय तक रखे रहने से भौतिक परिवर्तन के लक्षण दिखाती हो, भले ही उसकी समाप्ति तिथि शेष हो। साथ ही दवा की समाप्ति तिथि पूर्ण होने पर उसे प्रयोग में न लायें।
- 6. दवाओं को सुरक्षित ढ़ग से ले जाएं: यदि गर्म मौसम में यात्रा कर रहे हैं, तो उचित तापमान की स्थिति बनाए रखने के लिए इंसुलेटेड बैग या कूल पैक का उपयोग करें।
- 7. दवाइयों को स्कूटर की डिग्गी में ज्यादा देर तक नरखें।
- 8. सूरज की रोशनी में खड़ी कार के डैशबोर्ड में दवा ज्यादा देर तक न रखें।

चित्र: वाहनों में रखी हुई दवाएं

हालांकि दवाओं को उच्च तापमान से दूर रखना एक सामान्य जानकारी की बात है, फिर भी इस संबंध में यदि सर्वेक्षण किया जाए, तो आज भी कई घरों में दवाएं ऐसी जगह रखी हुई पाई जाएंगी, जहां का तापमान दवाओं के लिए प्रतिकुल होता है। तापमान विषय को लोग छोटी सी बात समझकर नजरअंदाज कर देते हैं, परंतु इसके परिणाम कितने गंभीर होते हैं, यह बाद में पता <mark>चलता है। दवा की प्रभावशीलता न केवल इसके</mark> निर्माण पर निर्भर करती है बल्कि इस पर भी निर्भर करती है कि इसे कैसे रखा जाता है। मरीजों को यह समझना चाहिए कि तापमान उनकी दवाओं की सुरक्षा और प्रभावशीलता बनाए रखने में महत्वपूर्ण भूमिका निभाता है। उचित भंडारण दिशानिर्देशों का पालन करके, वे यह सुनिश्चित कर सकते हैं कि उनकी दवाएं इच्छानुसार काम करती हैं और अंततः उनके स्वास्थ्य की रक्षा करती हैं। तापमान-संवेदनशील दवाओं से जुड़े जोखिमों को रोकने के लिए हमेशा भंडारण निर्देशों की जांच करें और आवश्यक होने पर फार्मासिस्ट से परामर्श लें।

आयनकारी विकिरण का पर्यावरण पर दुष्प्रभाव

प्रदीप कुमार बर्वे

वरिष्ठ तकनीकी अधीक्षक संस्थान चिकित्सालय भारतीय प्रौद्योगिकी संस्थान रूडकी

पर्यावरणनाशेन, नश्यन्ति सर्वजन्तवः पवनः दुष्टतां याति, प्रकृतिर्विकृतायते ।।

यह श्लोक पर्यावरण के विनाश के गंभीर परिणामों को दर्शाता है। इसका अर्थ है, "पर्यावरण के विनाश से सभी जीव नष्ट हो जाते हैं, हवा दूषित हो जाती है, और प्रकृति विकृत हो जाती है।" असल में आयनकारी विकिरण पर्यावरण के विनाश में प्रमुख भूमिका निभाता है। यह पर्यावरण को कई तरह से प्रभावित कर सकता है, खासकर तब, जब यह परमाणु दुर्घटनाओं, परमाणु हथियारों के परीक्षणों, या औद्योगिक कचरे के रिसाव के कारण फैलता है। इसका हानिकारक प्रभाव मिट्टी, जल, वायु, वनस्पति और जीव-जंतुओं पर पडता है

आयनकारी विकिरण एक प्रकार की ऊर्जा है जो विद्युत चुम्बकीय तरंगों जैसे, गामा किरणों और एक्स-रे या कणों जैसे, अल्फा, बीटा और न्यूट्रॉन के रूप में पर्यावरण में विद्यमान रहती हैं। इस विकिरण में इतनी ऊर्जा होती है कि वह परमाणुओं से इलेक्ट्रॉनों को निकालकर उन्हें आयनित कर सकता है। इस प्रक्रिया को आयनीकरण कहा जाता है।

पर्यावरण में उपस्थित आयनीकारक विकिरण प्राकृतिक स्रोतों या कृत्रिम (मानव निर्मित) स्रोतों से प्राप्त होता है। प्राकृतिक स्रोतों में अंतरिक्ष किरणें एवं भौतिक स्रोत, जैसे कि जमीन, इमारतों की दीवारों और फर्श से उत्सर्जित होने वाले रेडियोसक्रिय पदार्थ (जैसे रेडॉन) तथा भोज्य और पेय पदार्थों में प्राकृतिक रूप से उपस्थित रेडियोसक्रिय पदार्थ शामिल होते हैं। इसके अतिरिक्त, कृत्रिम या मानव निर्मित स्रोतों में नाभिकीय हथियारों के परीक्षण से निकलने वाला नाभिकीय बडी <mark>आयनीकारक</mark> विकिरण के चिकित्सा नैदानिक , थेरेपेटिक प्रयोग, एक्स-रे मशीनें, कण त्वरक, उपभोक्ता उत्पाद और रेडियोसक्रिय पदार्थीं शामिल हैं। आयनकारी विकिरण चाहे प्राकृतिक स्रोतों की उपज हो या मानव निर्मित स्रोतों की. इससे सबसे बड़ा नुकसान पर्यावरण को यानि प्रकृति को होता है। यह पर्यावरण को भिन्न-भिन्न प्रकार से प्रभावित करता है:

मिट्टी पर प्रभाव:

 रेडियोधर्मी तत्वों का संचय: सीजियम-137 (Cs-137) और स्ट्रोंटियम-90 (Sr-90) जैसे रेडियोधर्मी तत्व मिट्टी में लंबे समय तक मौजूद रहते हैं। मृदा की उर्वरता कम होना: विकिरण मिट्टी में पोषक तत्वों को प्रभावित करता है, जिससे कृषि उत्पादन घट सकता है।

उदाहरण: चेरनोबिल आपदा के बाद, आसपास की मिट्टी में रेडियोधर्मी तत्व कई दशकों तक मौजूद रहे, जिससे खेती करना असंभव हो गया।

जल स्रोतों पर प्रभाव:

- रेडियोधर्मी तत्वों का जल में मिलना परमाणु दुर्घटनाओं के बाद विकिरण पानी में घुलकर झीलों, नदियों और भूजल को प्रदूषित कर सकता है।
- जलीय जीवों पर असर मछलियों और अन्य जलीय जीवों में विकिरण जमा हो सकता है, जिससे उनकी प्रजनन क्षमता और विकास प्रभावित हो सकता है।
- मानव स्वास्थ्य पर खतरा दूषित पानी के सेवन से कैंसर, आनुवंशिक विकार और अन्य बीमारियां हो सकती हैं।

उदाहरण: फुकुशिमा (2011) दुर्घटना के बाद रेडियोधर्मी दूषित जल समुद्र में पहुंच गया, जिससे जलीय पारिस्थितिकी प्रभावित हुई और मछलियों में विकिरण का स्तर बढ़ गया।

वायु पर प्रभावः

- रेडियोधर्मी गैसों का उत्सर्जन परमाणु संयंत्रों से दुर्घटनाओं के दौरान रेडियोधर्मी आयोडीन-131, क्रिप्टोन-85, और जेनॉन-133 जैसी गैसें निकल सकती हैं।
- वायुमंडलीय संचरण (Atmospheric Dispersion) – हवा में मौजूद रेडियोधर्मी तत्व दूर-दूर तक फैल सकते हैं और वर्षा के साथ जमीन पर गिर सकते हैं।
- मानव और पशुओं के स्वास्थ्य पर असर –

इन गैसों के संपर्क में आने से थायरॉयड, कैंसर, फेफड़ों की समस्याएं और अन्य बीमारियां हो सकती हैं।

उदाहरणः चेरनोबिल हादसे के बाद रेडियोधर्मी बादल यूरोप के कई हिस्सों तक फैल गए थे।

वनस्पति और कृषि पर प्रभाव:

- पौधों में उत्परिवर्तन (Mutation) उच्च स्तर का विकिरण पौधों की आनुवंशिक संरचना बदल सकता है, जिससे उनकी वृद्धि और प्रजनन प्रभावित होता है।
- कृषि उत्पादनों में कमी रेडियोधर्मी प्रदूषण वाली मिट्टी में फसलें उगाने की क्षमता कम हो जाती है।
- खाद्य शृंखला में प्रवेश यह रेडियोधर्मी तत्व पौधों द्वारा अवशोषित हो सकते हैं और खाद्य श्रृंखला में प्रवेश कर सकते हैं। इन दूषित पौधों को खाने से रेडियोधर्मी तत्व पशुओं और अंततः मनुष्यों तक पहुंच सकते हैं।

उदाहरण: जापान के हिरोशिमा और नागासाकी में परमाणु हमले के बाद कुछ क्षेत्रों में पौधों में विकृति (mutation) देखी गई थी।

जीव-जंतुओं पर प्रभाव:

- डीएनए क्षिति और उत्परिवर्तन विकिरण से जंतुओं में आनुवंशिक परिवर्तन हो सकते हैं, जिससे उनके अंगों में विकृति और कैंसर जैसी बीमारियां हो सकती हैं।
- प्रजनन क्षमता में गिरावट रेडियोधर्मी प्रदूषण से जीवों की कई प्रजातियों की जनसंख्या घट सकती है।
- जैविक श्रृंखला में रेडियोधर्मी तत्वों का संचय – छोटे जीवों के शिकार से बड़े जीवों

तक विकिरण का संचरण हो सकता है, जिससे पूरी जैविक श्रृंखला प्रभावित होती है।

उदाहरण: चेरनोबिल क्षेत्र में कई जानवरों और पक्षियों में उत्परिवर्तन देखे गए हैं, जिनमें कुछ भेड़ियों और मछलियों में असामान्य परिवर्तन शामिल हैं।

परमाणु दुर्घटनाओं के पर्यावरणीय प्रभाव (महत्वपूर्ण घटनाएं): परमाणु दुर्घटनाओं के पर्यावरणीय प्रभाव बहुत गंभीर और दीर्घकालिक होते हैं। विगत कई वर्षों पूर्व विश्व में घटित ऐसी ही कुछ घटनाओं के दुष्प्रभाव आज भी देखे जाते हैं

घटना	वर्ष	पर्यावरणीय प्रभाव	
हिरोशिमा- नागासाकी (जापान)	1945	परमाणु बम के विकिरण ने मिट्टी, जल, और जीवों पर दीर्घकालिक प्रभाव डाला और हजारों लोगों को कैंसर हुआ।	
चेरनोबिल (यूक्रेन)	1986	30 किमी का इलाका निर्जन घोषित किया गया तथा वन्यजीवों में उत्परिवर्तन हुआ तथा लाखों लोगों में कैंसर और आनुवंशिक विकार देखे गए।	
फुकुशिमा (जापान)	2011	समुद्र में रेडियोधर्मी जल के रिसाव से मछलियों में विकिरण बढ़ा तथा पर्यावरण पर व्यापक प्रभाव पड़ा।	

पर्यावरणीय सुरक्षा एवं रोकथाम: विकिरण से पर्यावरणीय सुरक्षा और रोकथाम हेतु समय, दूरी और परिरक्षण के सिद्धांत का पालन करना आवश्यक है। विकिरण स्रोतों के पास कम समय बिताना, उनसे अधिकतम दूरी बनाए रखना, और प्रभावी परिरक्षण सामग्री का उपयोग करने से विकिरण जोखिम को काफी हद तक कम किया जा सकता है। इसके लिए कुछ बातों पर ध्यान देना जरुरी है:

- परमाणु संयंत्रों की सुरक्षा बढ़ाना आधुनिक तकनीकों से रेडियोधर्मी जल के रिसावको रोकना।
- रेडियोधर्मी कचरे का सुरक्षित निपटान गहरे भूगर्भीय क्षेत्रों में कचरे का भंडारण करना।
- पर्यावरण निगरानी प्रणाली वायु , जल,
 और मिट्टी में घुले विकिरण स्तर पर नजर रखना।
- प्रभावित क्षेत्रों को आइसोलेट करना उच्च विकिरण वाले क्षेत्रों में मानव प्रवेश को वर्जित करना।

आयनकारी विकिरण का पर्यावरण पर गहरा प्रभाव पड़ता है, जो मिट्टी, जल, वायु, वनस्पति और जीव-जंतुओं को नुकसान पहुंचा सकता है। हालांकि, वैज्ञानिक उपायों और सख्त सुरक्षा मानकों के जिरए इसके प्रभाव को नियंत्रित किया जा सकता है।

रेडिएशन कितना खतरनाक:

परमाणु ऊर्जा से जुड़ी चिंताओं को लेकर एक अहम सवाल यह है कि परमाणु रिएक्टर स्वयं कितने सुरक्षित हैं, खासकर उनके लिए जो वहां काम करते हैं। इसके जवाब में रीटा बर्नवाल कहती हैं, "अमेरिका ही नहीं, दुनिया भर में इस इंडस्ट्री में प्रत्येक काम पूरे नियमों के साथ किया जाता है। भारत में परमाणु ऊर्जा विनियामक बोर्ड का गठन 15 नवंबर, 1983 को किया गया था, इसे भारत के राष्ट्रपति द्वारा परमाणु ऊर्जा अधिनियम, 1962 के तहत प्रदत्त शक्तियों का उपयोग करके विनियामक और सुरक्षा कार्य करने के लिए स्थापित किया गया है। प्रगति शील युग में, शुरुआत से लेकर अंत तक, ईंधन लाने से लेकर कचरे के निपटान तक बहुत सावधानी बरती जाती है। साथ ही, अब ऐसे आधुनिक और कुशलतापूर्वक योजनाबद्ध तरीके अपनाए जा रहे हैं, जिनसे परमाणु संयंत्र पहले से ज्यादा सुरक्षित हो गए हैं। हालांकि, एक समस्या यह भी है कि पृथ्वी को गरम होने से बचाने के लिए कोयला और पेट्रोलियम जैसे जीवाश्म ईंधनों का उपयोग जल्द रोकना होगा। लेकिन परमाणु संयंत्र बनाने में समय लगता है। रीटा बर्नवाल कहती हैं, "यह दिक्कत तो है, लेकिन अच्छी बात यह है कि दुनिया भर में कई सारे न्युक्लियर पावर प्लांट हैं, जो आगे भी काम करते रहेंगे। उन्हें चालू रखते हुए यदि नए संयंत्र बनाए जाएंगे तो मुझे लगता है कि अगले पांच से दस साल में काफी परमाणु ऊर्जा उत्पन्न की जा सकती है।" 1960 और 70 के दशक में परमाणु ऊर्जा को लेकर काफी उत्साह था, लेकिन चेरनोबिल और फुकुशिमा की घटनाओं के कारण इसमें कमी आई है। फिर भी दुनिया में कई जगह नए परमाणु प्लांट बन रहे हैं। दुनिया प्रदुषण फैलाने वाले ईंधनों से दूरी बनाते हुए, अब अक्षय ऊर्जा के साथ-साथ न्युक्लियर एनर्जी को भी अपना रही है। इतिहास के काले दिनों में से एक, 26 अप्रैल, 1986 का दिन था। इसी दिन चेरनोबिल परमाणु संयंत्र में इतिहास का सबसे भयंकर हादसा हुआ था। 32 लोगों की तत्काल मौत हो गई थी और दर्जनों लोग पहले दिन रेडिएशन के कारण बुरी तरह जल गए थे। सोवियत संघ ने शुरू में इस घटना को छिपा लिया था, लेकिन स्वीडिश अधिकारियों की रिपोर्ट के बाद यह स्वीकार किया गया कि ऐसी दुर्घटना हुई थी।

चेरनोबिल स्टेशन की स्थापना:

चेरनोबिल परमाणु ऊर्जा संयंत्र यूक्रेन की राजधानी कीव से लगभग 130 किलोमीटर उत्तर में, प्रिप्यात शहर में स्थित था। उस समय, यूक्रेन

रीटा बर्नवाल कहती हैं, "यह दिक्कत तो है, लेकिन अच्छी बात यह है कि दुनिया भर में कई सारे न्युक्लियर पावर प्लांट हैं, जो आगे भी काम करते रहेंगे। उन्हें चाल रखते हुए यदि नए संयंत्र बनाए जाएंगे तो मुझे लगता है कि अगले <mark>पांच से दस साल</mark> में काफी परमाणु <mark>ऊर्जा उत्पन्न</mark> की जा सकती है।" <mark>1960 और 70 के दशक में</mark> परमाणु ऊर्जा को लेकर काफी उत्साह था, लेकिन चेरनोबिल और फुकुशिमा की घटनाओं के कारण इसमें कमी आई है। फिर भी दुनिया में कई जगह नए परमाणु प्लांट बन रहे हैं।

सोवियत संघ का हिस्सा था, जो सोवियत संघ के विघटन के बाद एक स्वतंत्र देश बन गया। यह संयंत्र बेलारूस की सीमा से लगभग 2 0 किलोमीटर दक्षिण में स्थित था।

चेरनोबिल परमाणु ऊर्जा संयंत्र में कुल चार परमाणु रिएक्टर थे। यूनिट 1 का निर्माण 1970 में, जबिक यूनिट 2 का निर्माण 1977 में पूरा हुआ था। 1983 में यूनिट 3 और 4 का निर्माण कार्य समाप्त हुआ। दुर्घटना के समय, दो अन्य रिएक्टरों पर कार्य चल रहा था। संयंत्र के दक्षिण-पूर्व में, प्रिप्यात नदी के पास एक कृत्रिम झील बनाई गई थी, जिसका उपयोग प्लांट को ठंडा पानी उपलब्ध कराने के लिए किया जाता था। यूक्रेन के इस क्षेत्र में जनसंख्या घनत्व काफी कम था। रिएक्टर से लगभग 3 किलोमीटर की दूरी पर स्थित नया शहर प्रिप्यात था, जहाँ लगभग 49,000 लोग रहते थे, जबिक चेरनोबिल के पुराने शहर की जनसंख्या लगभग 12,500 थी। दुर्घटना के समय, परमाणु ऊर्जा संयंत्र से 30 किलोमीटर के दायरे में कुल जनसंख्या लगभग 1.5 लाख थी।

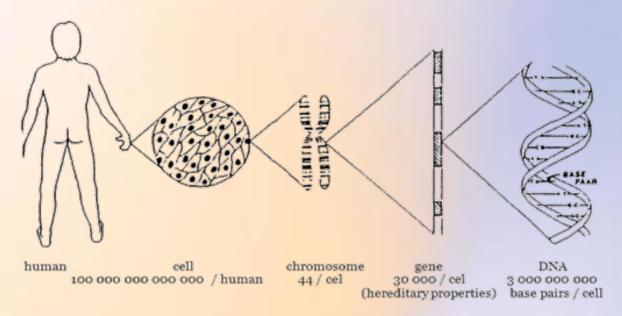
रिपोर्ट्स के अनुसार, दुर्घटना का मुख्य कारण रिएक्टर के दोषपूर्ण डिजाइन और नियंत्रण रॉड (Control Rod) की किमयाँ थीं। नाभिकीय विखंडन (Nuclear Fission) के दौरान उत्पन्न गर्मी को नियंत्रित करने के लिए पानी का उपयोग किया जाता है। यह पानी अतिरिक्त न्यूट्रॉन को अवशोषित करता है ताकि विखंडन प्रक्रिया अनियंत्रित न हो। पानी में भाप के बुलबुले बनते रहते हैं। आमतौर पर, आधुनिक रिएक्टरों में एक प्रणाली होती है, जिससे यदि भाप के बुलबुले अधिक मात्रा में बनें, तो विखंडन की प्रक्रिया धीमी हो जाती है। लेकिन चेरनोबिल रिएक्टर में एक गंभीर कमी थी, उसमें भाप के बुलबुले अधिक बनने से विखंडन की प्रक्रिया तेज हो जाती थी।

परमाणु संयंत्र में नाभिकीय विखंडन से ऊर्जा उत्पन्न होती है, जिसमें नए न्यूट्रॉन बनते हैं। इन अतिरिक्त न्यूट्रॉनों को नियंत्रित करने के लिए कंट्रोल रॉड का उपयोग किया जाता है। यदि न्यूट्रॉनों को नियंत्रित नहीं किया जाता है, तो विखंडन की प्रक्रिया अनियंत्रित हो जाती है और अत्यधिक ऊर्जा उत्पन्न होती है, जिससे रिएक्टर में शक्तिशाली विस्फोट को रोकना असंभव हो जाता है।

रिपोर्ट के अनुसार, चेरनोबिल में उपयोग किए गए कंट्रोल रॉड में भी खामियाँ थीं। जांच में यह पता चला कि रिएक्टर में जितने कंट्रोल रॉड का उपयोग होना चाहिए था, उतने उपयोग नहीं किए गए। इससे विखंडन प्रक्रिया बेकाबू हो गई और रिएक्टर में तेजी से भाप बनने लगी, जिससे अंदर का दबाव अत्यधिक बढ़ गया। कुछ ही समय में दो शक्तिशाली विस्फोट हुए, जिससे रेडियोधर्मी पदार्थ पूरे वातावरण में फैल गए।

विस्फोट इतना शक्तिशाली था कि रिएक्टर को ढकने वाली 1,000 टन से अधिक वजनी प्लेट और उसकी छत पूरी तरह नष्ट हो गई। रिएक्टर में उपयोग की जाने वाली ईंधन की छड़ें (Fuel Rods) भी नष्ट हो गईं और हवा में काफी ऊँचाई तक उछल गईं, जिससे वातावरण में भारी मात्रा में रेडियोधर्मी विकिरण (Radioactive Radiation) फैल गया।

भारत में परमाणु ऊर्जा उत्पादन:


भारत में कोयला, गैस, पवन ऊर्जा और जलविद्युत के बाद, परमाणु ऊर्जा प्रमुख स्रोतों में से एक है। परमाणु ऊर्जा उत्पादन के मामले में, भारत दुनिया का पाँचवाँ सबसे बड़ा देश है।

वर्तमान में, भारत में कुल 2 4 परिचालित (Operational) परमाणु रिएक्टर हैं, जिनकी स्थापित क्षमता लगभग 8,180 मेगावाट है।

आयनकारी विकिरण के जैविक प्रभाव:

आयनकारी विकिरण एक ऐसा विकिरण होता है जिसमें इतनी ऊर्जा होती है कि वह परमाणुओं से इलेक्ट्रॉन को हटा सकता है, जिससे आयन (charged particles) बनते हैं। यह जैविक कोशिकाओं और डीएनए को प्रभावित कर सकता है, जिससे विभिन्न स्वास्थ्य समस्याएं हो सकती हैं।

आयनकारी विकिरण के प्रकार: आयनकारी विकिरण निम्न प्रकार के होते हैं। ये विकिरण परमाणु या अणुओं को आयनित करने की क्षमता रखते हैं:

चित्र: मानवीय कोशिका एवं डीएनए की संरचना

- अल्फा कण (-rays): ये कण भारी और कम दूरी तक जाने वाले होते हैं, लेकिन आंतरिक संपर्क में आने से खतरनाक सिद्ध हो सकते हैं।
- बीटा कण (-rays): ये कण त्वचा को नुकसान पहुंचा सकते हैं और अंदरूनी संपर्क में आने पर अधिक खतरनाक स्थिति उत्पन्न कर देते हैं।
- गामा किरणें (-rays) और एक्स-रे यह किरणे जीव के शरीर में प्रवेश करके डीएनए को नुकसान पहुंचाने में सक्षम होती हैं।
- न्यूट्रॉन विकिरण यह विकिरण अत्यधिक शक्तिशाली होता है और परमाणु रिएक्टरों में अधिक पाया जाता है।

जैविक प्रभावों हेतु कारक: विकिरण के प्रभाव कई कारकों पर निर्भर करते हैं, जो जैविक संरचनाओं के लिए हानिकारक हो सकते हैं:

 खुराक (Dose) – जितना अधिक इनका उपयोग किया जाएगा, शरीर को उतना ही अधिक नुकसान होगा।

- समयाविध (Duration) लंबी अवधि तक इनके संपर्क में रहना खतरनाक होता है।
- अंग प्रभावित होने की संवेदनशीलता अस्थि मज्जा, प्रजनन अंग और पाचन तंत्र सबसे अधिक संवेदनशील अंग होते हैं, जिन पर विकिरण का असर शीघ्र होने की संभावना होती है।

अल्पकालिक (Short-term) प्रभाव: तीव्र विकिरण सिंड्रोम में (Acute Radiation Syndrome) यदि व्यक्ति उच्च मात्रा में विकिरण (1 से 10 सीवर्ट) के संपर्क में आता है, तो उसके तुरंत प्रभाव देखे जा सकते हैं जैसे:

- मतली और उल्टी आना
- त्वचा पर जलन और घाव होना
- अस्थि मज्जा की क्षिति से प्रतिरक्षा प्रणाली कमजोर होना
- अंततः मृत्यु भी हो सकती है (यदि बहुत अधिक मात्रा हो)

दीर्घकालिक (Long-term) प्रभाव: यदि कम मात्रा में लेकिन लंबे समय तक शरीर में विकिरण जाता रहे, तो यह कई प्रकार की समस्याएं पैदा कर सकता है जैसे:

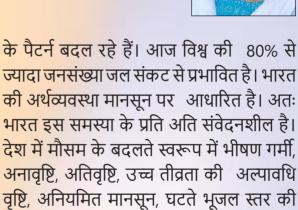
- कैंसर का खतरा बढ़ना ल्यूकेमिया, थायरॉइड कैंसर, त्वचा कैंसर आदि।
- डीएनए क्षति आनुवंशिक विकार उत्पन्न हो सकते हैं।
- प्रजनन समस्याएं बांझपन, गर्भपात और जन्मजात विकृतियां हो सकती हैं।
- नेत्र रोग मोतियाबिंद (Cataract) जल्दी हो सकता है।

विकिरण से सुरक्षा हेतु उपाय:

- समय कम करें जितना विकिरण के कम संपर्क में रहेंगे, उतना बेहतर होगा।
- दूरी बनाए रखें विकिरण स्रोत से दूर रहना उसके प्रभाव को कम करता है।

- शील्डिंग (Shielding) सीसा (Lead),
 कंक्रीट और पानी विकिरण को अवशोषित कर सकते हैं।
- पोटेशियम आयोडाइड टेबलेट पोटेशियम आयोडाइड, अगर समय पर और उचित मात्रा में लिया जाए, तो थायरॉइड ग्रंथि द्वारा रेडियोधर्मी आयोडीन से बचाव करता है (विशेषकर परमाणु दुर्घटनाओं) और इस प्रकार थायरॉइड कैंसर और अन्य बीमारियों के जोखिम को कम किया जा सकता है

आयनकारी विकिरण का जैविक प्रभाव गंभीर हो सकता है, लेकिन उचित सावधानियों से इसके जोखिम को कम किया जा सकता है। चाहे चिकित्सा में उपयोग हो या परमाणु ऊर्जा संयंत्र, सुरक्षा प्रोटोकॉल का पालन करना आवश्यक है।


भाषा और लिपि में अंतर			
#	भाषा (Language)	लिपि (Script)	
1.	प्रत्येक भाषा की अपनी ध्वनियाँ होती है।	सामान्यतः एक लिपि किसी भी भाषा में लिखी जा सकती है।	
2.	भाषा सूक्ष्म होती है।	लिपि स्थूल होती है।	
3.	भाषा में अपेक्षाकृत अस्थायित्व होता है, क्योंकि भाषा उच्चरित होते ही गायब हो जाती है।	लिपि में अपेक्षाकृत स्थायित्व होता है, क्योंकि किसी भी लिपि को लिखकर ही व्यक्त किया जा सकता है।	
4.	भाषा ध्वन्यात्मक होती है।	लिपि दृश्यात्मक होती है।	
5.	भाषा तुरंत प्रभावकारी होती है।	लिपि थोड़ी विलंब से प्रभावकारी होती है।	
6.	भाषा ध्वनि संकेतों की व्यवस्था है।	लिपि वर्ण संकेतों की व्यवस्था है।	
7.	भाषा ही संगीत का माध्यम है।	परंतु लिपि नहीं।	

जलवायु <mark>संकट में भारतीय पारंपरिक जल संरक्षण</mark> संरचनाओं का महत्व

डॉ. अपर्णा दत्ता

परियोजना अनुसंधान वैज्ञानिक-2 पर्यावरण अभियांत्रिकी ग्रुप जानपद अभियांत्रिकी विभाग भारतीय प्रौद्योगिकी संस्थान रूडकी,

घटनाएँ आम होती जा रही हैं। ऐसी परिस्थितियों में

देश को एक सतत, प्रामाणिक एवं विश्वसनीय जल

संरक्षण संरचना की आवश्यकता है।
बढ़ते तापमान, पिघलती बर्फ की परतें तथा
अस्थिर मानसून चक्र के फलस्वरूप नदियाँ, झीलें
एवं भूजल स्रोत सिकुड़ रहे हैं। ऐसे में, भारत की
पारंपरिक जल संरक्षण प्रणालियाँ पुनः प्रासंगिक
और अत्यंत महत्वपूर्ण हो गई हैं। यहाँ पारंपरिक
रूप से जल को पंचतत्वों में एक तथा जल स्रोतों
को पूजनीय माना जाता है। प्राचीन मंदिरों में बने
जलकुंड, साँची में ईसापूर्व बने जलकुंड, तथा
किलों में बने जलाशय उन्नत वर्षा जल संचयन
व्यवस्था के जागृत उदाहरण हैं। सदियों पहले ही
यहाँ वर्षा जल को संचित कर जल स्तर को बनाए
रखने के लिए प्रभावी संरचनाएँ विकसित की गईं
थी। यह संरचनाएँ स्थानीय परिस्थिति और
समदायों की आवश्यकता के अनुकृत डिजाइन

"जलवायु परिवर्तन" का अर्थ वैश्विक जलवायु की प्रवृत्ति में आए दीर्घकालिक बदलाव से है। मानव गतिविधियाँ इसके लिए मुख्य रुप से उत्तरदायी हैं क्योंकि वनों की कटाई, जीवाश्म ईंधनों का प्रयोग, औद्योगिकी, परिवहन आदि आज मानव आधुनिकता के प्रमुख कारक हैं। जिसके परिणामस्वरूप वैश्विक तापमान में वृद्धि, समुद्र स्तर का बढ़ना, महासागरीय धाराओं में परिवर्तन, सुखा, बाढ़ एवं तीव्र तूफानों में बढ़ोत्तरी जैसी गंभीर आपदाओं के प्रमुख दुष्प्रभाव पूर्व के दशकों से ही अनुभव किए जा रहे हैं। अनियंत्रित रूप से मानव गतिविधियों के बढ़ने से यह समस्याएँ और भी घनीभूत होती जा रही हैं तथा पर्यावरण को भारी नुकसान पहुँचा रही हैं। इन बदलावों का सीधा प्रभाव जन स्वास्थ्य, जल की उपलब्धता, गुणवत्ता, आवंटन तथा उपयोग, कृषि, जैव विविधता एवं ऊर्जा उत्पादन पर पड रहा है।

भारत के विकसित देश बनने का सपना देश की जनसंख्या के स्वास्थ्य, औद्योगिक विकास, कृषि एवं मत्स्य सम्पदा की उपज में वृद्धि, संतुलित जल परिवहन व्यवस्था तथा स्थिर एवं सुरक्षित विद्युत उत्पादन पर आधारित है। जलवायु परिवर्तन का प्रभाव जलचक्र को भी बाधित करता है जिसके फलस्वरूप वर्षा, सतही प्रवाह तथा वाष्पोत्सर्जन

यह मिट्टी का एक छोटा बांध होता है जिसमें आस पास के क्षेत्रों से बहकर आने वाले वर्षा जल का सतही प्रवाह एकत्रित होता है। यह जल धीरे धीरे रिसकर भूजल के स्तर को बढ़ाता है, रोजमर्रा के घरेलू कार्यों में प्रयोग होता है तथा विभिन्न पक्षियों एवं जीव-जंतुओं का आश्रयस्थल भी है।

की गईं थी। बावड़ी/बाओली, जोहड़, टांका, कुंड, एरी, करेज/कनात, सुरंगम, जाबो, आहर-पाइन, तथा बाँस सिंचाई प्रणाली जैसे समाधान जल संचयन के कुछ श्रेष्ठ उदाहरण हैं।

बावड़ी/बाओली: ये जल संरचनाएं देश के उत्तर एवं पश्चिमी राज्यों जैसे गुजरात, राजस्थान, दिल्ली, मध्य प्रदेश, हिमाचल प्रदेश एवं उत्तराखंड में पाई जाती हैं। इनकी संरचना गहराई तक सीढ़ीनुमा कुओं जैसी होती है। यह पानी के भंडारण के साथ ही एक सामाजिक मिलन स्थल की भूमिका भी निभाती हैं। अग्रसेन की बावड़ी (दिल्ली), चांद बावड़ी (आबनेरी, राजस्थान), रानी की बाव (गुजरात) तथा राजों की बावली (दिल्ली) कुछ प्रसिद्ध बावड़ियाँ हैं।

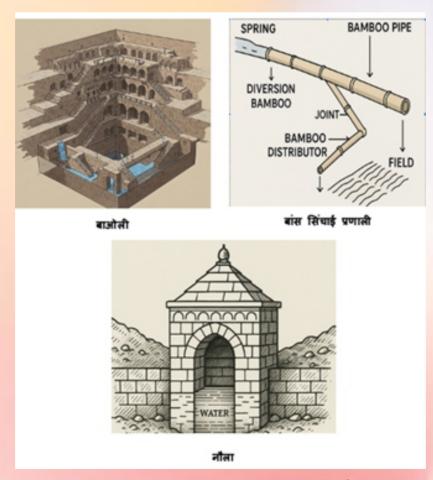
जोहड़: यह संरचना राजस्थान, हरियाणा, पंजाब, दिल्ली एवं पश्चिमी उत्तर प्रदेश में प्रचलित है। यह मिट्टी का एक छोटा बांध होता है जिसमें आस पास के क्षेत्रों से बहकर आने वाले वर्षा जल का सतही प्रवाह एकत्रित होता है। यह जल धीरे-धीरे रिसकर भूजल के स्तर को बढ़ाता है, रोजमर्रा के घरेलू कार्यों में प्रयोग होता है तथा विभिन्न पक्षियों एवं जीव-जंतुओं का आश्रयस्थल भी है।

टंकी /हौदी: यह राजस्थान के शुष्क क्षेत्रों में पाए जाने वाली घरेलू जल भंडारण संरचना है जिसमें घरों के छत या आँगन से एकत्रित वर्षाजल को चूने से लेपित ईंटो से बने भूमिगत टैंक में जमा किया जाता है।

कुंड/कुंडी: इसे पश्चिमी राजस्थान एवं गुजरात के रेगिस्तानी इलाकों में पीने के पानी का संग्रहण करने के लिए बनाया जाता है। यह पत्थरों या ईंटों से पंक्तिबद्ध आयताकार या गोलाकार गड्ढा होता है जिसमें ढलानदार जलग्रहण क्षेत्रों से वर्षाजल एकत्रित करते हैं।

खत्री: ये हिमाचल प्रदेश की पारंपरिक जल संचयन संरचनाएँ हैं जो पहाड़ी क्षेत्रों में कठोर चट्टानों में खोदे गए आयताकार गड्ढे होते हैं। इनका मुख्य उद्देश्य पहाड़ों की चट्टानों एवं मिट्टी से रिसने वाले वर्षाजल को एकत्रित करना है।

नौला: उत्तराखंड के पहाड़ी इलाकों (कुमाऊँ) में वर्षाजल के भूमिगत रिसाव तथा प्राकृतिक झरनों के जल को स्थानीय पत्थरों एवं वास्तुकला की तकनीकों से बने एक मंदिरनुमा केंद्रीय जलाशय (नौला) में प्रवाहित किया जाता था। इस जल का प्रयोग घरेलू कामों के लिए होता था। इन्हें परम्परागत रूप से पवित्र माना जाता है।


एरी (तालाब): एरी दक्षिण के तमिलनाडु में वर्षाजल संग्रहण के द्वारा सिंचाई और बाढ़ नियंत्रण के लिए बनाए जाने वाले मिट्टी के तट बंध हैं। तमिलनाडु में बारामासी नदी के अभाव को समझते हुए, मानसून से पोषित नदियों के जल को निचले इलाकों में स्थित खेतों तक लाने के लिए कैस्केडिंग टैंकों की एक शृंखला का सरल समाधान तैयार किया गया। यह रीसेप्टेकल्स तथा ओवर-फ्लो चैनेल्स की विशाल शृंखलाओं पर आधारित मिट्टी के तटबंध तथा टैंकों से बनी प्रणाली है। इससे वर्षाजल एकत्रीकरण, भंडारण,

भूजलस्तर पुनर्भरण तथा मृदा संरक्षण में भी सहायता मिलती है।

करेज/कनातः बीदर एवं विजयपुरा (कर्नाटक), महाराष्ट्र एवं दक्कन पठार के करेज/कनात संरचना में भूमिगत सुरंगो तथा ऊर्वाधर शाफ़्टों के माध्यम से ऊँचे स्थानों पर स्थित जलभृत्तों से बिना किसी पम्प के पानी को सतह पर लाया जाता है। इस जल का प्रयोग घरेलू कामों तथा सिंचाई में किया जाता है। यह जल प्रबंधन पद्धति भारत में बहमनी सुल्तानों द्वारा 14-16 शताब्दी में लाई गई थी।

सुरंगम: यह प्रणाली केरला के पहाड़ी इलाकों में जलापूर्ति के लिए बनाए जाने वाले क्षैतिज सुरंग हैं। यह प्राकृतिक जल स्रोतों से पानी संग्रह करती हैं। पूर्वी एवं उत्तर-पूर्वी भारत के बाढ़ ग्रस्त तथा पहाड़ी इलाकों में भी ऐसी कई पारंपरिक जल प्रबंधन प्रणालियाँ हैं।

आहर-पाइनः आहर-पाइन प्रणाली दक्षिण बिहार की एक स्वदेशी जल संचयन एवं सिंचाई व्यवस्था है, जहाँ आहर (वर्षा जल संग्रहण टैंक) तथा पाइन (जलमार्ग) के एक नेटवर्क के माध्यम से बाढ़ के पानी को जमा कर सूखे के दौरान सिंचाई की जाती है। यह मगध साम्राज्य के शासनकाल से प्रचलन में है। यह डायवर्ज़न-सह-भंडारण प्रणाली है जो (आहर) तीन तरफ से मिट्टी के छोटे तटबंध से घिरे चौकोर जल संचयन संरचना हैं जिसमें नदी या वर्षाजल संग्रहित करते हैं और "पाइन" इस संग्रहित जल को खेतों तक वहन करते हैं।

चित्रः भारतीय पारंपरिक जल संरक्षण संरचनाएँ

बाँस सिंचाई प्रणाली: मेघालय की बाँस सिंचाई प्रणाली एक पारंपरिक, स्वदेशी तकनीक है जो निदयों एवं झरनों से पानी को बांस के खोखले पाइपों के नेटवर्क के माध्यम से ढलानों पर बने खेतों तक पहुँचाने के लिए गुरुत्वाकर्षण का उपयोग करती है। यह पानी के कुशल उपयोग वाली ड्रिप सिंचाई विधि है, जहाँ पानी को धीरे-धीर पौधों की जड़ों तक पहुँचाया जाता है। यह पहाड़ी इलाकों में जल प्रबंधन के लिए बेहद प्रभावी है।

जाबो: जाबो का अर्थ पानी को रोकना या एकत्र करना है। यह नागालैंड के पहाड़ी इलाकों की पारंपरिक जल संचयन पद्धित है। यह एक प्रकार की रूफटॉप वर्षाजल संरक्षण प्रणाली है जिसमें छतों से एकत्रित जल को विशेष रूप से बनाए गए कृत्रिम जलाशयों में संग्रहित किया जाता है। इस जल का उपयोग खेती, मत्स्यपालन और पशुपालन के लिए किया जाता है। यह वानिकी, कृषि और पशुपालन को जोड़ती है।

ये सभी जल संचयन प्रणालियाँ स्थानीय जलवायु एवं भौगोलिक परिस्थिति, उपलब्ध संसाधन तथा सामुदायिक आवश्यकताओं को ध्यान में रखकर विकसित की गईं थी। इनका निर्माण तथा रखरखाव सामुदायिक भागीदारी पर आधारित रहा है। वर्तमान काल में जलवाय परिवर्तन के कारण आधुनिक जल प्रबंधन प्रणाली पर अतिरिक्त दवाब है। अत: इनके पुनरुद्धार से न केवल जल प्रबंधन में सहायता होगी, अपितु भूजल स्तर में सुधार, वर्षाजल संग्रहण तथा अतिवृष्टि एवं अनावृष्टि के दुष्प्रभावों से निपटने की क्षमता भी विकसित की जा सकेगी। पारंपरिक जल संरक्षण संरचनाएँ आज की बदलती जलवायु में और भी ज्यादा प्रासंगिक हैं। अपने सरल डिजाइन एवं निर्माण पद्धति, स्थानीय वास्तुशैली एवं निर्माण सामग्री के प्रयोग तथा विद्युत रहित संचालन के कारण यह आदर्श "शून्य कार्बन-फ़ुट्प्रिंट" प्रणालियाँ हैं। यही नहीं, ये जल के प्रति सामुदायिक दायित्व व जागरूकता के उत्कृष्ट उदाहरण भी हैं। अतः इन पारंपरिक जल संरक्षण संरचना प्रणालियों को पुनर्जीवित एवं संरक्षित करने की अत्यावश्यकता है। सरकार के साथ ही नागरिकों को भी अपने गाँव-मोहल्लों में स्थित कुओं तथा अन्य पारंपरिक जल संरचनाओं को पुनर्जीवित करने में यथाशक्ति सहायता करनी चाहिए। यह पूर्वजों की धरोहर एवं सतत जल संरक्षण प्रणाली के श्रेष्ठ दृष्टांत हैं, जो आने वाली पीढ़ियों के प्रति एक सुरक्षित स्वनिर्भर जल संसाधन भेंट होंगे।

- 30 मई 1826 को कलकत्ता से पंडित जुगल किशोर शुक्ल के संपादन में निकलने वाले 'उदन्त मार्तण्ड' को हिंदी का पहला समाचार पत्र माना जाता है।
- 2. दुनिया भर में कुल 176 विश्वविद्यालयों में हिंदी पढ़ाई जाती है। जिनमें से अकेले 45 विश्वविद्यालय अमेरिका में हैं।
- 3. पहला हिंदी टाइपराइटर 1930 के दशक के दौरान लॉन्च किया गया था।

औद्योगिक प्रक्रियाओं में रेडियोआइसोटोप का उपयोग

संजय गोस्वामी

पूर्व छात्र, उद्यमिता प्रकोष्ठ भारतीय प्रौद्योगिकी संस्थान रूडकी

रेडियोआइसोटोप किसी रासायनिक तत्व का अस्थिर नाभिक होता है। यह अधिक स्थिर अवस्था में बदलने के लिए विकिरण (अल्फा, बीटा, गामा किरणें) उत्सर्जित करता है। इसकी उत्पत्ति स्वाभाविक रूप से हो सकती है या इसे प्रयोगशालाओं में बनाया जा सकता है। रेडियोआइसोटोप का उपयोग चिकित्सा इमेजिंग, कैंसर उपचार, औद्योगिक प्रक्रियाओं तथा कार्बन डेटिंग जैसी विभिन्न तकनीकों में किया जाता है परंतु इसे जानने से पूर्व इसकी उत्पत्ति को समझना आवश्यक है।

रेडियोधर्मिता की खोज वर्ष 1896 में उस समय हुई थी, जब एंटोनी हेनरी बेकेरेल ने देखा कि यूरेनियम निरंतर एवं बिना किसी शुरुआत के विकिरण उत्सर्जित करता है। पियरे क्यूरी और मैरी क्यूरी ने इस घटना का वर्णन करने के लिए रेडियोधर्मिता शब्द को जन्म दिया। उन्होंने साबित किया कि यूरेनियम की रेडियोधर्मिता एक परमाणु गुण है, रासायनिक नहीं। बाद में मैरी क्यूरी ने यूरेनियम अयस्क में रेडियोधर्मी तत्व पोलोनियम एवं रेडियम की खोज की थी। इन तत्वों का अर्धायु काल (किसी नमूने के आधे भाग को विकिरण के माध्यम से क्षय होने में लगने वाला समय) अपेक्षाकृत कम होता है तथा ये यूरेनियम से अधिक रेडियोधर्मी होते हैं।

रेडियोआइसोटोप कैसे बनते हैं?

रेडियोआइसोटोप का अस्थिर नाभिक प्राकृतिक रूप से या परमाणु में कृत्रिम परिवर्तन के परिणामस्वरूप उत्पन्न हो सकता है। कुछ मामलों में रेडियोआइसोटोप बनाने के लिए परमाणु रिएक्टर का उपयोग किया जाता है, जबिक अन्य मामलों में साइक्लोट्रॉन का। परमाणु रिएक्टर न्यूट्रॉन- समृद्ध रेडियोआइसोटोप जैसे मोलिब्डेनम- 99, साइक्लोट्रॉन प्रोटॉन- समृद्ध रेडियोआइसोटोप जैसे के लिए सबसे उपयुक्त होते हैं।

प्राकृतिक रूप से पाए जाने वाले रेडियोआइसोटोप का सबसे प्रसिद्ध उदाहरण यूरेनियम(U238) से है। U235 जो U238 का आइसोटोप है, प्राकृतिक रूप से पाए जाने वाले यूरेनियम का 0.7 प्रतिशत छोड़कर शेष सभी यूरेनियम-238 है तथा कम स्थिर या अधिक रेडियोधर्मी यूरेनियम-235 है, जिसके नाभिक में तीन न्यूट्रॉन कम होते हैं।

रेडियो आइसोटोप विकसित करने के लिए अनुसंधान रिएक्टरों की जरूरत होती है, जिसमें विखंडित कृत्रिम तत्व जैसे Ir-192,Co-60,-

60,Tc-99,H-3,Cs-137,Am-239,आदि जैसे रेडियो आइसोटोप बनाए जाते हैं, जिससे गामा या अल्फा किरणें निकलती है। गामा किरणों के प्रभाव से कैंसर की कोशिकाओं को खत्म किया जाता है। इन किरणों के प्रभाव से फसल की पैदावार को बढ़ाने एवं खाद्य पदार्थों को बहुत दिनों तक सुरक्षित रखने के अलावा वेल्डिंग त्रुटि की पहचान हेत् औद्योगिक रेडियोग्राफी में इसका बहतायत में उपयोग किया जाता है। गामा-किरणों के विकिरण में आइसोटोप से उत्सर्जित ऊर्जा कृत्रिम रूप से उत्पादित आइसोटोप में से कुछ सामान्य आइसोटोप जैसे Co-60,Ir-192, Cs-137,Se-75,Yb-169,TI-70 का गामा रेडियोग्राफी के क्षेत्र में उपयोग होता हैं। लेकिन सभी जगह रेडियोग्राफी में इरीडियम 192 या कोबाल्ट-60 का ही उपयोग होता हैं। अन्य रेडियो आइसोटोप की ऊर्जा बहुत अधिक होती है। रेडिएशन डोजो के कारण उनका उपयोग नहीं होता है, ये सब गामा एमिटर हैं। यहां एक ध्यान देने वाली बात है इरीडियम का हाफ लाइफ 74 दिन होता है, जबिक कोबाल्ट.60 का 5.2 साल (ईयर) है, लेकिन Ir-192 की ऊर्जा कोबाल्ट -60 से काफी कम होती है। अतः उसकी रेडियोग्राफी इमेज काफी साफ होती है लेकिन 74दिन में ही सोर्स घटकर आधा ही रह जाता है। अतः औद्योगिक रेडियोग्राफी हेतु कोबाल्ट 60 का उपयोग बहुतायत में वेल्ड के अंदरूनी भाग की जाँच के लिए किया जाता है। अल्फा एमिटर का उपयोग पेसमेकर, सैटेलाइट बैटरी, व स्मोक डिटेक्टर में किया जाता है। टेक्नीशियम-99m एक रेडियोन्यूक्लाइड परमाणु एजेंट है जिसे मानव शरीर के विभिन्न अंगों की नैदानिक इमेजिंग यानि उनकी स्थिति को पता लगाने के लिए किया जाता है जो एफ डी ए (FDA) द्वारा अनुमोदित है, जिसमें मस्तिष्क, हड्डी, फेफड़े, गुर्दे, थायरॉयड, हृदय, पित्ताशय, यकृत, प्लीहा, अस्थि मज्जा, लार और अश्रु ग्रंथियां, रक्त पूल और प्रहरी नोड्स शामिलहैं।

रेडियोआइसोटोप एक धनात्मक बीटा कण, या पॉज़िटॉन के उत्सर्जन के माध्यम से अधिक स्थिरता प्राप्त कर सकते हैं। इस प्रक्रिया के दौरान, नाभिक में एक प्रोटॉन न्यटॉन में परिवर्तित होता है, और साथ ही एक पॉज़िट्रॉन उत्सर्जित होता है। परिणामस्वरूप, परमाणु क्रमांक एक कम हो जाता है, और अतिरिक्त ऊर्जा गामा विकिरण के रूप में मुक्त होती है। नाभिक शेष <mark>अतिरिक्त ऊर्जा</mark> को गामा किरणों के रूप में नष्ट कर देता है। यद्यपि गामा विकिरण—उच्च-ऊर्जा फोटॉन—अक्सर बीटा उत्सर्जन के साथ-साथ होता है, कुछ न्यूक्लाइड केवल गामा किरणों के उत्सर्जन से ही क्षयित हो जाते हैं। इस प्रकार का क्षय द्रव्यमान या परमाणु क्रमांक को नहीं बदलता, बल्कि सक्रिय नाभिक से अतिरिक्त ऊर्जा मुक्त करने की एक विलंबित विधि प्रदान करता है। एक दुर्लभ प्रकार का क्षय पहली बार <mark>1970 में देखा</mark> गया था, जिसमें एक नाभिक एक प्रोटॉन को निष्कासित करता है और एक अलग तत्व में परिवर्तित हो जाता है। हाल के शोध से संकेत मिलता है कि इस क्षय से गुजरने वाले नाभिक अक्सर नाभिक के भीतर प्रोटॉन और न्यूट्रॉन की व्यवस्था के लिए मानी जाने वाली विशिष्ट गोलाकार-कोश संरचना से विकृत हो जाते हैं।

रेडियोआइसोटोप की अर्ध आयु: अर्ध-आयु वह समय है जो किसी रेडियोन्यूक्लाइड या रेडियोधर्मी समस्थानिक को अपनी प्रारंभिक मात्रा के आधे तक क्षय होने में लगता है। एक अर्ध-आयु के बाद, मूल रेडियोआइसोटोप का 50% शेष रहता है; दो अर्ध-आयु के बाद, 25% शेष रहता है; और यह प्रक्रिया तब तक जारी रहती है जब तक मूल समस्थानिक एक नए तत्व में परिवर्तित नहीं हो जाता। उदाहरण के लिए, रेडियम-226 की अर्ध-आयु 1,600 वर्ष है, जिसका अर्थ है कि इस अवधि के बाद, प्रारंभिक रेडियम-226 का आधा भाग रेडॉन-222 और हीलियम-4 में क्षय हो जाएगा। अर्ध-आयु एक सेकंड के दस लाखवें भाग से लेकर 10 अरब वर्ष तक हो सकती है। अधिकांश रेडियोआइसोटोप की अर्ध-आयु बहुत कम होती है, जबिक प्राकृतिक रूप से पाए जाने वाले रेडियोआइसोटोप की अर्ध-आयु लंबी होती है। अर्ध- आयु की अवधारणा रेडियोधर्मिता के अध्ययन में एक मूल्यवान सांख्यिकीय उपकरण है। विभिन्न रेडियोआइसोटोप के बीच विकिरण उत्सर्जन की दर में काफी भिन्नता होती है। हालाँकि, प्रत्येक रेडियोआइसोटोप की अपनी अंतर्निहित क्षय दर होती है। क्षय स्थिरांक को एक विशिष्ट समयावधि में क्षय होने वाले परमाणुओं के अंश के रूप में परिभाषित किया जाता है। क्षय स्थिरांक को व्यक्त करने का एक अधिक व्यावहारिक तरीका अर्ध-आयु की अवधारणा के माध्यम से है। किसी रेडियोआइसोटोप की अर्ध-आयु उसकी रेडियोधर्मिता को आधा करने के लिए आवश्यक समय है। यह अवधि कुछ सेकंड से लेकर अरबों वर्षों तक हो सकती है। न्युक्लिऑन समूहों के उत्सर्जन से जुड़े कई अन्य प्रकार के रेडियोधर्मी क्षय देखे गए हैं। वास्तव में, किसी दिए गए नाभिक के सापेक्ष लगभग किसी भी आकार के टुकड़े उत्सर्जित हो सकते हैं। ऐसी घटनाएँ दुर्लभ हैं और नाभिकों के स्वतः पुनर्व्यवस्थित होने पर अनियमित रूप से घटित होती हैं। इसके अतिरिक्त, रेडियोधर्मी क्षय का एक अन्य रूप, जिसे बिबेटा क्षय कहा जाता है, अत्यंत दुर्लभ है।

रेडियोआइसोटोप का उपयोग:

रेडियोआइसोटोप का उपयोग जैविक प्रक्रियाओं का अध्ययन करने, पदार्थों को ट्रैक करने और यहां तक कि आंतरिक अंगों की छवि बनाने के लिए टेसर के रूप में किया जाता है। पदार्थ के साथ विकिरण की अंतःक्रिया के कई व्यावहारिक अनप्रयोग हैं। गामा किरणों का उपयोग खाद्य पदार्थों के जीवाणु-शोधन, बहुलक उत्पादन तथा कैंसर उपचार में किया गया है। इसके लिए <mark>आमतौर पर कोबाल्ट-</mark>60 और रेडियम-226 का उपयोग किया जाता है। अन्य उपयोगों में मोटाई गेज और उपकरण की घिसाव व माप शामिल हैं। कई उत्पाद एक सतत रोल या शीट से बनाये जाते हैं जो एक समान और ज्ञात मोटाई का होना चाहिए। किसी पदार्थ की शीट से गुजरने वाली विकिरण की मात्रा उसकी मोटाई पर निर्भर करती है। इसलिए, उचित माप के साथ, रेडियोधर्मिता का उपयोग इस प्रकार के उत्पादों की तीव्रता की निगरानी के लिए किया जा सकता है।

उद्योगों में रेडियो आइसोटोप:

रेडियो आइसोटोप विकसित करने के अनुसंधान रिएक्टरों की जरूरत होती है जिसमें विखंडित कृत्रिम तत्व जैसे Ir-192,Co-60,-60,Tc-99,H-3,Cs-137,Am-239, आदि जैसे रेडियो आइसोटोप बनाया जाता हे जिससे गामा या अल्फा किरणें निकलती है, गामा किरणों के प्रभाव से कैंसर के सेल को खत्म किया जाता है व इन किरणों के प्रभाव से फसल की पैदावार को बढ़ना व खाद्य पदार्थों को बहुत दिनों तक सुरक्षित रखना इसके अलावा वेल्डिंग त्रुटि को पहचान हेतु औधौगिक रेडियोग्राफी में बहुतायत में उपयोग किया जाता है जैसे गामा-किरणों के विकिरण में आइसोटोप से उत्सर्जित ऊर्जा कृत्रिम रूप से

उत्पादित आइसोटोप में से कुछ सामान्य आइसोटोप जैसे Co-60,Ir-192, Cs-137,Se-75,Yb-169,TI-70 का गामा रेडियोग्राफी के क्षेत्र में उपयोग होता हैं। लेकिन सभी जगह रेडियोग्राफी में इरीडियम 192 या कोबाल्ट-60 का ही उपयोग होता हैं। अन्य रेडियो आइसोटोप की ऊर्जा बहुत अधिक होती है रेडिएशन डोजो के कारण उनका उपयोग नहीं होता है ये सब गामा एमिटर हैं यहां एक ध्यान देने वाली बात है इरीडियम का हाफ लाइफ 74 दिन होता है जबिक कोबाल्ट.60 का 5.2 साल (ईयर) है लेकिन Ir-192 की ऊर्जा कोबाल्ट -60 से काफी कम होता है अतः उसका रेडियोग्राफी इमेज काफी साफ होता है लेकिन 74दिन में ही सोर्स घटकर आधा ही जाता है अतः इंडस्ट्रीयल रेडियोग्राफी हेतु कोबाल्ट 60 का उपयोग बहुतायत में वेल्ड के अंदरूनी भाग की जाँच के लिए किया जाता है. अल्फा एमिटर का उपयोग पेसमेकर, सैटेलाइट बैटरी, व स्मोक डिटेक्टर में किया जाता है।टेक्नीशियम- 9 9 m एक रेडियोन्युक्लाइड परमाणु एजेंट है जिसे मानव शरीर के विभिन्न अंगों की नैदानिक इमेजिंग यानि उनकी स्थिति को पता लगाने के लिए किया जाता है जो एफ डी ए (FDA) द्वारा अनुमोदित है, जिसमें मस्तिष्क, हड्डी, फेफड़े, गुर्दे, थायरॉयड, हृदय, पित्ताशय, यकृत, प्लीहा, अस्थि मज्जा, लार और अश्रु ग्रंथियां, रक्त पुल और प्रहरी नोड्स शामिल हैं। औद्योगिक प्रक्रियाओं में रेडियोआइसोटोप का उपयोग विभिन्न प्रकार के अनुप्रयोगों में होता है, जैसे तरल पदार्थों के प्रवाह और रिसाव का पता लगाना. सामग्रियों की मोटाई मापना, वेल्ड एवं ढाँचे की अखंडता की जाँच करना (रेडियोग्राफी), विकिरण प्रसंस्करण, तथा तेल व गैस उद्योग में क्षेत्रों का निर्धारण करना। ये समस्थानिक औद्योगिक प्रक्रियाओं की दक्षता बढाने, गैर-विनाशकारी परीक्षण (एनडीटी) करने और उत्पादन को अनुकूलित करने में महत्वपूर्ण भूमिका निभाते हैं। विज्ञान एवं उद्योग उत्पादकता में सुधार लाने के लिए तथा कुछ मामलों में ऐसी जानकारी प्राप्त करने के लिए रेडियोआइसोटोप को विभिन्न तरीकों से उपयोग किया जाता है, जो किसी अन्य तरीके से प्राप्त नहीं की जा सकती। सीलबंद रेडियोधर्मी स्रोतों का उपयोग औद्योगिक रेडियोग्राफी, गेजिंग अनुप्रयोगों तथा खनिज विश्लेषण में किया जाता है।

निरीक्षण में उपयोग:

रेडियोधर्मी पदार्थों का उपयोग विभिन्न उद्योगों में धातु के पुर्जी और वेल्ड की अखंडता के निरीक्षण के लिए किया जाता है। औद्योगिक गामा रेडियोग्राफी विभिन्न प्रकार के विकिरणों की पदार्थों में अलग-अलग सीमा तक प्रवेश करने की क्षमता का उपयोग करती है। गामा रेडियोग्राफी लगभग उसी तरह काम करती है जैसे हवाई अड्डों पर सामान को एक्स-रे द्वारा निरीक्षित किया जाता है। एक्स-रे उत्पन्न करने के लिए आवश्यक भारी मशीन के बजाय, प्रभावी गामा किरणें उत्पन्न करने के लिए बस एक सीलबंद टाइटेनियम कैप्सूल में रेडियोधर्मी पदार्थ की एक छोटी गोली की आवश्यकता होती है।

ट्रेसर में रेडियोआइसोटोप का उपयोग : रेडियोआइसोटोप का उपयोग रेडियोट्रेसर में किया जाता है रेडियोट्रेसर एक जैविक रूप से सक्रिय अणु होता है जिस पर एक रेडियोधर्मी परमाणु अंकित होता है, जो उत्सर्जित विकिरण का पता लगाकर रासायनिक, जैविक या भौतिक प्रक्रियाओं पर नज़र रखने में सक्षम बनाता है। शरीर में प्रवेश कराने पर, रेडियोट्रेसर विशिष्ट ऊतकों या कोशिकाओं को लक्षित करते हैं, जिससे पेट (PET) और स्पेक्ट (SPECT) जैसी चिकित्सा इमेजिंग तकनीकें रोगों, सूजन, अंगों के कार्यों और चयापचय मार्गों को देखने में सक्षम होती हैं। इसके अतिरिक्त, इनका उपयोग विभिन्न विश्लेषणात्मक और औद्योगिक अनुप्रयोगों में कम सांद्रता पर रासायनिक प्रतिक्रियाओं और प्रक्रिया संचालनों की जाँच के लिए किया जाता है।रेडियोट्रेसर का उपयोग तेल एवं गैस उद्योग में तेल क्षेत्रों में पृथ्वी के अंदर तेल कूप की स्थिति ज्ञात करने में भी किया जाता है।

एक्स-रे सेट का उपयोग बिजली उपलब्ध होने पर किया जा सकता है और स्कैन की जाने वाली वस्तु को एक्स-रे स्रोत तक ले जाकर रेडियोग्राफ किया जा सकता है। रेडियोआइसोटोप का सबसे बड़ा फायदा यह है कि जब भी निरीक्षण की आवश्यकता हो, तो उन्हें मौके पर ले जाया जा सकता है और बिजली की भी जरूरत नहीं होती। हालाँकि, इन्हें आसानी से बंद नहीं किया जा सकता है, इसलिए इन्हें उपयोग के दौरान तथा अन्य समय पर भी उचित रूप से परिरक्षित किया जाना चाहिए।

गामा रेडियोग्राफी, एक प्रकार का गैर-विनाशकारी परीक्षण (एनडीटी) है, जिसे द्रव पाइपलाइनों वाहिकाओं. महत्वपर्ण या संरचनात्मक तत्वों पर डाले गए कंक्रीट एवं वेल्ड की अखंडता की पृष्टि के लिए उपयोग किया जाता है। गामा रेडियोग्राफी की अनूठी विशेषताओं के कारण यह तकनीक कई उद्योगों में एक महत्वपूर्ण उपकरण बन गई है। उदाहरण के लिए, नई तेल या गैस पाइपलाइनों का निरीक्षण करने के लिए, पाइप के बाहरी हिस्से के चारों ओर वेल्ड पर एक विशेष फिल्म चिपका दी जाती है। 'पाइप क्रॉलर' नामक एक मशीन एक परिरक्षित रेडियोधर्मी स्रोत को पाइप के अंदर से वेल्ड की जगह तक ले जाती है। वहाँ, रेडियोधर्मी स्रोत को दूर से उजागर

किया जाता है तथा फिल्म पर वेल्ड की एक रेडियोग्राफिक छवि बनाई जाती है। बाद में इस फिल्म को विकसित किया जाता है तथा वेल्ड में किसी भी प्रकार की खराबी के लिए उसकी जाँच की जाती है।

गामा रेडियोग्राफी का उपयोग मुख्य औद्योगिक अनुप्रयोगों के अलावा भी किया गया है। अप्रैल 2015 में नेपाल में आए विनाशकारी भूकंप के बाद इस तकनीक (एनडीटी) का सफलतापूर्वक उपयोग किया गया था। एनडीटी का उपयोग स्कूलों एवं अस्पतालों जैसी महत्वपूर्ण इमारतों के साथ-साथ ऐतिहासिक आकर्षणों की अखंडता का परीक्षण करने के लिए किया गया था। जापान एवं मलेशिया दोनों ने प्राकृतिक आपदाओं के बाद नागरिक संरचनाओं के निरीक्षण के लिए एनडीटी के व्यापक उपयोग की आईएईए पहल का समर्थन किया है।

चित्रः गैर विनाशकारी परीक्षण में उपयोग किए जाने वाले उपकरणों का परीक्षण

गेज:

रेडियोधर्मी स्रोतों वाले गेज उन सभी उद्योगों में व्यापक रूप से उपयोग किए जाते हैं, जहाँ गैसों, द्रवों और ठोस पदार्थों के स्तर की जाँच आवश्यक होती है। आईएईए का अनुमान है कि दुनिया भर के उद्योगों में ऐसे कई लाख गेज कार्यरत हैं। ये किसी स्रोत से आने वाले विकिरण की मात्रा को मापते हैं जो पदार्थों में अवशोषित हो गया है। ये गेज वहाँ सबसे अधिक उपयोगी होते हैं जहाँ ऊष्मा, दबाव, या संक्षारक पदार्थ, जैसे पिघला हुआ काँच या पिघली हुई धातु होती है। मोटाई को सटीक रूप से मापने के लिए रेडियोआइसोटोप का उपयोग करने की क्षमता का व्यापक रूप से शीट सामग्री के उत्पादन में उपयोग किया जाता है, जिसमें धातु, कपड़ा, कागज, प्लास्टिक आदि शामिल होते हैं। घनत्व गेज का उपयोग वहाँ किया जाता है जहाँ किसी द्रव, चूर्ण या ठोस का स्वचालित नियंत्रण महत्वपूर्ण होता है, उदाहरण के लिए डिटर्जेंट निर्माण में।

रेडियोआइसोटोप के उपयोग में पांच मुख्य श्रेणियां होती हैं:

- रेडियोआइसोटोप को पदार्थ पर आयनकारी विकिरण के प्रभाव के आधार पर उपयोग किया जाता है।
- इसका उपयोग आयनकारी विकिरण पर सामग्रियों के प्रभाव के आधार पर किया जाता है।
- कुछ प्राकृतिक रूप से पाए जाने वाले रेडियोआइसोटोपों की क्षय दर के आधार पर आयु निर्धारण।
- प्रत्यक्ष शक्ति रूपांतरण।
- भौतिक एवं जैविक रेडियोट्रेसर के अनुप्रयोग के रुप में।

रेडियोआइसोटोप उपकरणों के तीन लाभ हैं:

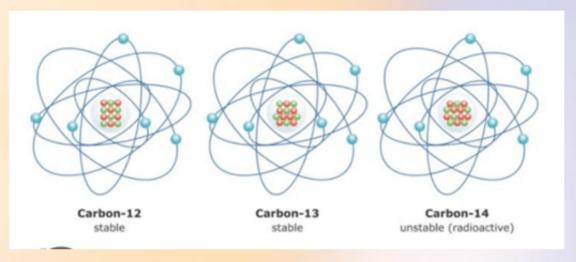
 इन उपकरणों को मापन, परीक्षण की जा रही सामग्री या उत्पाद के साथ भौतिक संपर्क के बिना उपयोग किया जा सकता है, जिससे परिचालन वातावरण का दायरा बढ़ जाता है और निरीक्षण का समय कम हो जाता है।

- आइसोटोप स्रोत का बहुत कम रखरखाव आवश्यक है।
- कई उपकरण लागत एवं लाभ की दृष्टि से समय की बचत के कारण कुछ ही महीनों में अपना खर्च निकाल लेते हैं।

उद्योगों में दो मुख्य प्रकार के न्यूक्लियोनिक गेज का उपयोग किया जाता है: स्थिर और पोर्टेबल। स्थिर गेज आमतौर पर उत्पादन सुविधाओं जैसे खदानों, मिलों, तेल एवं गैस प्लेटफार्मों में उत्पादन प्रक्रिया की गुणवत्ता को नियंत्रित एवं निगरानी करने के साधन के रूप में उपयोग किए जाते हैं। उदाहरण के लिए, उत्तरी सागर में, स्थिर न्यूक्लियोनिक गेज का उपयोग कभी- कभी विभाजक वाहिकाओं के भीतर की स्थितियों का निर्धारण करने और पृथक गैस धाराओं में अविशिष्ट तेल की मात्रा की निगरानी के लिए किया जाता है।

न्यूक्लिऑनिक गेज का उपयोग कोयला उद्योग में भी किया जाता है। हॉपर में कोयले की ऊँचाई का निर्धारण एक तरफ विभिन्न ऊँचाइयों पर उच्च ऊर्जा वाले गामा स्रोतों को रखकर किया जा सकता है, साथ ही फोकसिंग कोलिमेटर्स को भार के आर-पार किरणों को निर्देशित करके भी किया जाता है। ऐसे लेवल गेज रेडियोआइसोटोप के सबसे आम औद्योगिक उपयोगों में से एक हैं।

प्लास्टिक फिल्म बनाने वाली कुछ मशीनें प्लास्टिक फिल्म की मोटाई मापने के लिए बीटा कणों के साथ रेडियोआइसोटोप गेजिंग का उपयोग करती हैं। यह फिल्म एक रेडियोधर्मी स्रोत एवं एक डिटेक्टर के बीच उच्च गति से चलती है। डिटेक्टर सिग्नल की शक्ति का उपयोग प्लास्टिक फिल्म की मोटाई को नियंत्रित करने के लिए किया जाता है।


कागज निर्माण में, बीटा गेज का उपयोग 400

मीटर प्रति सेकंड तक की गति पर कागज की मोटाई की निगरानी के लिए किया जाता है।

पोर्टेबल गेज का उपयोग कृषि, निर्माण एवं सिविल इंजीनियरिंग में किया जाता है। उदाहरण के लिए, पोर्टेबल गेज का उपयोग कृषि भूमि पर मिट्टी के संघनन की मात्रा, या सड़क की सतह के लिए फर्श मिश्रण में डामर के घनत्व को निर्धारित करने के लिए किया जा सकता है।

कार्बन डेटिंग:

विशेषतः प्राकृतिक रूप से पाए जाने वाले रेडियोआइसोटोपों की सापेक्षिक प्रचुरता का विश्लेषण, चट्टानों और अन्य सामग्रियों की आयु निर्धारित करने में अत्यंत महत्वपूर्ण है, जो भूवैज्ञानिकों, मानविवज्ञानियों, जलविज्ञानियों एवं पुरातत्विवदों के लिए रुचिकर हैं।

चित्र: कार्बन के विभिन्न रुप

नाभिकीय चिकित्साः

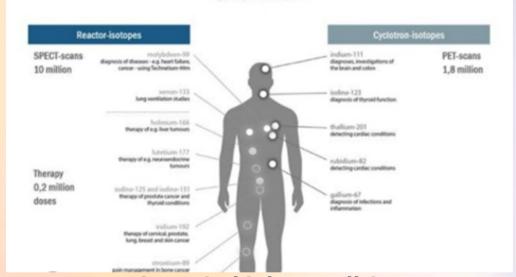
नाभिकीय चिकित्सा में पॉजिट्रॉन एमिशन टोमोग्राफी (PET) का उपयोग किया जाता है। यह एक अधिक सटीक और परिष्कृत विधि है जो साइक्लोट्रॉन में उत्पादित आइसोटोप का उपयोग करती है। एक पॉजिट्रॉन उत्सर्जक रेडियोन्यूक्लाइड को आमतौर पर इंजेक्शन द्वारा लक्ष्य ऊतक में पहुंचाया जाता है, तथा उसे संचित किया जाता है, जैसे ही यह विघटित होता है, यह एक पॉजिट्रॉन उत्सर्जित करता है, जो शीघ्र ही पास के इलेक्ट्रॉन के साथ संयोजित हो जाता है। परिणामस्वरूप विपरीत दिशाओं में निर्देशित दो गामा किरणें एक साथ उत्सर्जित होती हैं। इनका पता पी.ई.टी. कैमरे द्वारा लगाया जाता है तथा ये

उनकी उत्पत्ति के बारे में बहुत सटीक संकेत देते हैं। पीईटी की सबसे महत्वपूर्ण नैदानिक भूमिका ऑन्कोलॉजी में है, जिसमें फ्लोरीन-18 एक ट्रेसर के रूप में काम करता है। यह अधिकांश कैंसरों का पता लगाने और मूल्यांकन करने के लिए एक सटीक एवं गैर-आक्रामक विधि साबित हुई है। अत: इसका उपयोग हृदय तथा मस्तिष्क के कैंसरों का पता लगाने के लिए बेहतर होता है। रेडियोफार्मास्युटिकल्स का उपयोग निदान में किया जाता है। इसमें रोगी को रेडियोधर्मी पदार्थ की एक खुराक दी जाती है और फिर अंग में गतिविधि को दो-आयामी छवि के रूप में या टोमोग्राफी का उपयोग करके तीन-आयामी छवि के रूप में देखा जा सकता है। परमाणु चिकित्सा में निदान पद्धित में रेडियोधर्मी ट्रेसर का उपयोग किया जाता है जो शरीर के अंदर गामा किरणें उत्सर्जित करते हैं। ये ट्रेसर आमतौर पर रासायनिक यौगिक से जुड़े अल्पकालिक समस्थानिक होते हैं, जो कुछ शारीरिक प्रक्रियाओं का अध्ययन करने में सहायता करते हैं। इसे इंजेक्शन द्वारा दिया जा सकता है।

नई प्रक्रियाओं में पीईटी और एक्स-रे टोमोग्राफी (सीटी) को एक साथ मिलाकर दो छवियों (पीईटी-सीटी) का सह-पंजीकरण प्रदान किया जाता है, जिससे अकेले पारंपरिक गामा कैमरे की तुलना में 30% बेहतर निदान संभव हो पाता है। यह एक बहुत ही शक्तिशाली और मूल्यवान उपकरण है जो मनोभ्रंश से लेकर हृदय संबंधी बीमारियों तथा कैंसर तक विभिन्न प्रकार की बीमारियों पर अद्वितीय जानकारी प्रदान करता है। पीईटी एवं एमआरआई (पीईटी-एमआरआई) का संयोजन, विशेष रूप से मस्तिष्क इमेजिंग के लिए, गतिशील कंट्रास्ट तथा चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी के साथ नरम ऊतकों की प्रसार-भारित छवियों को सक्षम बनाता है। चिकित्सा में रेडियोआइसोटोप का उपयोग तुलनात्मक रूप से कम है, लेकिन फिर भी महत्वपूर्ण है। कैंसरग्रस्त वृद्धि विकिरण से होने वाली क्षति के प्रति संवेदनशील होती है। इस कारण से, कैंसरयुक्त वृद्धि को वृद्धि वाले क्षेत्र से विकिरणित करके

चित्रः पीईटी एवं सीटी को एक साथ मिलाकर दो छवियों का सह-पंजीकरण

नियंत्रित या समाप्त किया जा सकता है। इसे रेडियोसर्जरी कहा जाता है।


बाह्य विकिरण, जिसे कभी-कभी टेलीथेरेपी भी कहा जाता है। इसमें रेडियोधर्मी कोबाल्ट-60 स्रोत से प्राप्त गामा किरण का उपयोग करके टेलीथेरेपी की जाती है, हालांकि विकसित देशों में अब अधिक रैखिक त्वरक का उपयोग उच्च-ऊर्जा एक्स-रे स्रोतों के रूप में किया जा रहा है (गामा एवं एक्स-रे लगभग एक ही हैं), एक बाहरी विकिरण प्रक्रिया को गामा नाइफ रेडियोसर्जरी के रूप में जाना जाता है। इसमें कैंसरग्रस्त ट्यूमर वाले मस्तिष्क के सटीक क्षेत्र पर Co-60 के 201 स्रोतों से गामा विकिरण को केंद्रित करना शामिल है। आमतौर पर बाह्यरोगी के रूप में दुनिया भर में प्रतिवर्ष 30,000 से अधिक रोगियों का उपचार किया जाता है। टेलीथेरेपी ट्यूमर को हटाने की बजाय उसके उन्मुलन में प्रभावी है।

आंतरिक रेडियोन्यूक्लाइड थेरेपी एक छोटे विकिरण स्रोत है। आमतौर पर गामा या बीटा उत्सर्जक, को लक्ष्य क्षेत्र में प्रत्यारोपित करके यह <mark>थेरेपी दी जाती है। लघु-दूरी रेडियोथेरेपी को</mark> ब्रैकीथेरेपी के नाम से जाना जाता है और यह उपचार का मुख्य साधन बनता जा रहा है। <mark>आयोडीन- 1 3 1 का उपयोग आमतौर पर</mark> थायरॉयड केंसर के इलाज के लिए किया जाता है. जो संभवतः कैंसर के इलाज का सबसे सफल प्रकार है। इसका उपयोग गैर-घातक थायरॉयड विकारों के इलाज के लिए भी किया जाता है। इरीडियम-192 प्रत्यारोपण का उपयोग विशेष रूप से सिर एवं स्तन में किया जाता है। इन्हें तार के रूप में उत्पादित किया जाता है तथा कैथेटर के माध्यम से लक्ष्य क्षेत्र में प्रविष्ट कराया जाता है। सही खुराक देने के बाद, इम्प्लांट तार को सुरक्षित भंडारण स्थान पर से हटा दिया जाता है।

आयोडीन-125 या पैलेडियम-103 के स्थायी प्रत्यारोपण कैप्सूल (40 से 100) का उपयोग प्रारंभिक चरण के प्रोस्टेट कैंसर के लिए ब्रेकीथेरेपी में किया जाता है। वैकल्पिक रूप से, अधिक रेडियोधर्मी Ir-192 युक्त कैप्सूल को 15 मिनट तक, दो या तीन बार डाला जा सकता है। ब्रैकीथेरेपी प्रक्रियाएं शरीर को कम विकिरण देती हैं, लक्षित ट्यूमर तक अधिक सीमित होती हैं, तथा लागत प्रभावी होती हैं। ल्यूकेमिया के उपचार में अस्थि मज्जा प्रत्यारोपण शामिल हो सकता है, जिसमें दोषपूर्ण अस्थि मज्जा को पहले विकिरण की एक बड़ी (और अन्यथा घातक) खुराक से नष्ट कर दिया जाएगा, तथा उसके स्थान पर दानकर्ता

से प्राप्त स्वस्थ अस्थि मज्जा को प्रतिस्थापित किया जाएगा।

कई चिकित्सीय प्रक्रियाएं उपशामक होती हैं, जो आमतौर पर दर्द से राहत देने के लिए होती हैं। उदाहरण के लिए, स्ट्रोंटियम-89 और सैमेरियम-153 का उपयोग केंसर से उत्पन्न हड्डी के दर्द से राहत के लिए किया जाता है। रेनियम-186 इसके लिए एक नया उत्पाद है। ल्यूटेटियम- 1 7 7 डोटाटेट या ऑक्ट्रियोटेट का उपयोग न्यूरोएंडोक्राइन जैसे ट्यूमर के इलाज के लिए किया जाता है, और यह वहां प्रभावी होता है जहां अन्य उपचार विफल हो जाते हैं।

चित्रः आंतरिक रेडियोन्यूक्लाइड थेरेपी

प्राकृतिक रूप से पाए जाने वाले रेडियोआइसोटोप:

कार्बन-14 (अर्ध-आयु: 5730 वर्ष): लकड़ी, अन्य कार्बन-युक्त पदार्थों (20,000 वर्ष तक) और भूमिगत जल (50,000 वर्ष तक) की आयु मापने के लिए उपयोग किया जाता है।

क्लोरीन-36 (301,000 वर्ष): क्लोराइड के स्रोतों और पानी की आयु (2 मिलियन वर्ष तक) को मापने के लिए उपयोग किया जाता है।

लेड-210 (22.3 वर्ष): रेत और मिट्टी की परतों की 80 वर्ष तक की आयु जानने के लिए इसका उपयोग किया जाता है।

ट्रिटियम, एच-3 (12.3 वर्ष): भूजल (30 वर्ष तक) को मापने के लिए उपयोग किया जाता है।

कृत्रिम रूप से उत्पादित रेडियोआइसोटोप:

अमेरिकियम-241 (अर्ध-आयु: 432 वर्ष): बैकस्कैटर गेज, स्मोक डिटेक्टर, फिल हाइट डिटेक्टर और कोयले की राख की मात्रा मापने में उपयोग किया जाता है।

सीजियम-137 (30.17 वर्ष): मृदा अपरदन और निक्षेपण के स्रोतों की पहचान हेतु रेडियोट्रेसर तकनीक में, साथ ही घनत्व एवं भराव ऊँचाई स्तर स्विच में उपयोग किया जाता है। कम तीव्रता वाले गामा स्टरलाइजेशन के लिए भी उपयोग किया जाता है।।

क्रोमियम-51 (27.7 वर्ष): तटीय कटाव के अध्ययन के लिए रेत को लेबल करने के लिए उपयोग किया जाता है, साथ ही रक्त के अध्ययन में भी इसका उपयोग किया जाता है।

कोबाल्ट-60 (5.27 वर्ष): गामा स्टरलाइजेशन, औद्योगिक रेडियोग्राफी, घनत्व और भरण ऊंचाई स्विच के लिए व्यापक रूप से उपयोग किया जाता है।

गोल्ड-198 (2.7 दिन) और टेक्नीशियम-99 मीटर (6 घंटे): इसका उपयोग सीवेज और तरल अपशिष्ट की गतिविधियों का अध्ययन करने के साथ-साथ समुद्री प्रदूषण का कारण बनने वाले कारखाने के अपशिष्ट का पता लगाने तथा नदी तल और समुद्र तल में रेत की गतिविधियों का पता लगाने के लिए किया जाता है।

गोल्ड-198 (2.7 डी): तटीय कटाव का अध्ययन करने हेतु रेत को लेबल करने के लिए उपयोग किया जाता है।

हाइड्रोजन-3 (ट्रिटिएटेड जल में) (12.3 वर्ष): सीवेज और तरल अपशिष्टों के अध्ययन के लिए अनुरेखक के रूप में उपयोग किया जाता है।

इरीडियम-192 (73.8 डी): धातु घटकों में दोषों का पता लगाने के लिए गामा रेडियोग्राफी में उपयोग किया जाता है। क्रिप्टन-85 (10.756 वर्ष) : औद्योगिक मापन के लिए उपयोग किया जाता है।

मैंगनीज-54 (312.5 डी): खनन अपशिष्ट जल से निकलने वाले उत्सर्जन में भारी धातु घटकों के व्यवहार की जानकारी प्राप्त करने के लिए उपयोग किया जाता है।

निकेल-63 (100 वर्ष): कैमरों और प्लाज्मा डिस्प्ले में प्रकाश संवेदकों, इलेक्ट्रॉनिक डिस्चार्ज रोकथाम एवं मोटाई गेज के लिए इलेक्ट्रॉन कैप्चर डिटेक्टरों में उपयोग किया जाता है। दीर्घायु बीटा-वोल्टाइक बैटरियों के लिए भी उपयोग किया जाता है।

सेलेनियम-75 (120 डी): गामा रेडियोग्राफी और गैर-विनाशकारी परीक्षण में उपयोग किया जाता है।

स्ट्रोंटियम-90 (28.8 वर्ष) : औद्योगिक मापन के लिए उपयोग किया जाता है।

थैलियम-204 (3.78 वर्ष) : औद्योगिक मापन के लिए उपयोग किया जाता है।

यटरिबयम-169 (32 डी) : गामा रेडियोग्राफी और गैर-विनाशकारी परीक्षण में उपयोग किया जाता है।

जिंक-65 (244 डी): खनन अपशिष्ट जल से निकलने वाले अपशिष्टों में भारी धातु घटकों के व्यवहार की जानकारी प्राप्त करने के लिए उपयोग किया जाता है।

विकिरण खतरे से सावधानी: रेडियोधर्मी ऊर्जा का उत्पादन परमाणु रिसर्च रिएक्टर से जुड़ा है रिसर्च रिएक्टर में नाभिकीय ईधन से न्यूट्रान की नाभिकीय विखंडण की क्रिया रिएक्टर कोर में होती है जिसमें परमाणु श्रृंखला अभिक्रिया को नियंत्रित करने के लिए, विखंडन के दौरान उत्सर्जित अतिरिक्त न्यूट्रॉन को नियंत्रण छडों (बोरॉन या कैडमियम से बनी) जैसी सामग्रियों द्वारा अवशोषित किया जाता है या न्यूटॉन की गति को धीमा करने और उन्हें आगे विखंडन का कारण बनने की अधिक संभावना बनाने के लिए मॉडरेटर (जैसे भारी पानी या ग्रेफाइट) का उपयोग किया जाता है। अतः रेडियोधर्मी पदार्थ का उत्पादन पर्यावरण में रेडियोधर्मी पदार्थ के उत्सर्जन से जुड़ा हुआ है। इनमें से कुछ नाभिकीय विकिरण बहुत भेदक होते हैं तथा शरीर की कोशिकाओं को अपूरणीय क्षति पहुंचाते हैं। यद्यपि उद्योगों एवं चिकित्सा के क्षेत्र में यह महत्वपूर्ण है, परंतु पर्यावरण में विकिरण उत्सर्जन लगातार खतरा बन सकता है। लेकिन सिमित मात्रा में उपयोग करने पर विकिरण का खतरा नहीं होता है विकिरण हवा में हर जगह होती है इसलिए इससे चिंता नहीं करनी चाहिए। विकिरण खतरे से सावधानी बरतने हेतु हमें विकिरण सुरक्षा नियम का पालन करना चाहिए।

संदर्भ सूची:

- https://www.ansto.gov.au/education/ nuclear-facts/what-are-radioisotopes
- 2. https://worldnuclear.org/informationlibrary/non-power-nuclear applications/radioisotoperesearch/radioisotopes-in-industry
- 3. मार्टिन, जेम्स (2006). विकिरण सुरक्षा के लिए भौतिकी: एक पुस्तिका
- 4. पंत एच.जे. "उद्योग में रेडियोट्रेसर के अनुप्रयोग: एक समीक्षा"। एप्लाइड रेडिएशन एंड आइसोटोप्स
- 5. ऑस्ट्रे<mark>लिया परमाणु</mark> विज्ञान और प्रौद्योगिकी संगठन, (ANSTO),ऑस्ट्रेलिया(गूगल)
- 6. वर्ल्ड नुक्लियर .ऑर्गनाइजेशन इन्फॉर्ममेशन -लाइब्रेरी(गूगल)

भारत की भाषाएँ

OFFICIAL LANGUAGES OF INDIA

18-संताली (Santali)

19-सिन्थी (Sindhi) 20-तमिल (Tamil)

21-तेलुगु (Telugu)

22-उर्दू (Urdu)

1-आसामी (Assamese) 17-संस्कृत (Sanskrit)

2-बंगाली (Bengali)

3-बोडो (Bodo)

4-डोगरी (Dogri) 5-गुजरती (Gujarati)

6-हिंदी (Hindi)

7-कन्नड़ (Kannada)

8-कश्मीरी (Kashmiri)

9-कोंकणी (Konkani)

10-मैथली (Maithili)

11-मलयालम (Malayalam)

12-मणिपुरी (Manipuri)

13-मराठी (Marathi)

14-नेपाली (Nepali)

15-ओडिया (Odia)

16-पंजाबी (Punjabi)

www.dailybharathindi.com

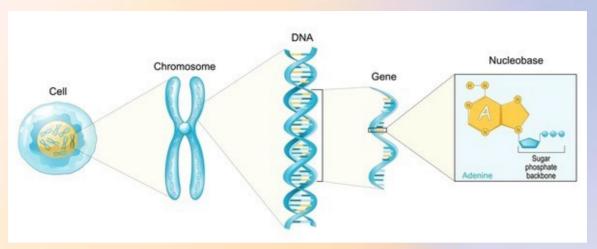
मानवीय क्रोमोसोम में जीन की संख्यात्मक कमी

संदीप चंद उपाध्याय

वनस्पति विज्ञान विभाग हेमवती नंदन बहुगुणा गढ्वाल विश्वविद्यालय

डीएनए के छोटे-छोटे हिस्सों को जीन कहा जाता है, जो मनुष्य के क्रोमोसोम में पाए जाते हैं। ये जीन मनुष्य के शरीर के प्रत्येक गुण को नियंत्रित करते हैं, जैसे आँखों का रंग, लम्बाई, या बीमारियों से लड़ने की क्षमता इत्यादि। मनुष्य में 46 क्रोमोसोम पाए जाते हैं। बहुतपहले वैज्ञानिकों का अनुमान था कि व्यक्ति में 100,000 जीन होते हैं, लेकिन ह्यूमन जीनोम प्रोजेक्ट (2003) के बाद पता चला कि इंसानों में केवल 20,000 से 25,000 जीन होते हैं और अब, नए शोध बताते हैं कि यह संख्या धीरे-धीरे और कम हो रही है। लेकिन ऐसा क्यों?

चित्रः मानवीय जीन


1. जीन एवं क्रोमोसोम: एक संक्षिप्त परिचय

जीन, आनुवंशिकता की मूलभूत इकाई है जो माता-पिता से बच्चे को स्थानांतरित होती है। ये डीएनए के अनुक्रमों से बने होते हैं और कोशिकाओं के नाभिक में गुणसूत्रों (क्रोमोसोम) पर विशिष्ट स्थानों पर एक के बाद एक व्यवस्थित होते हैं। प्रत्येक जीन एक विशिष्ट प्रोटीन या आरएनए अणु के लिए कोड करता है, जो कोशिका के कार्यों में महत्वपूर्ण भूमिका निभाते हैं।

क्रोमोसोम, कोशिकाओं के केंद्रक में पाए जाने वाले धागे जैसी संरचनाएँ हैं जो प्रोटीन और डीएनए के अणुओं से बनी होती हैं। ये डीएनए, आनुवंशिक जानकारी के लिए कोड होते हैं और लक्षणों को निर्धारित करते हैं तथा माता-पिता के लक्षणों को संतानों में प्रेषित करते हैं। मनुष्यों में, 23 जोड़े गुणसूत्र (क्रोमोसोम) होते हैं, जिनमें से 22 जोड़े ऑटोसोम तथा 1 जोड़ा सेक्स क्रोमोसोम (XX या XY) होता है।

2. जीन की संख्या में कमी

जीन की संख्या में कमी होने के पीछे कई जैविक और पर्यावरणीय कारण हैं। जैविक कारणों में आनुवंशिक उत्परिवर्तन, गुणसूत्रों की संख्या में परिवर्तन, या जीन की संरचना में बदलाव आदि शामिल हैं। पर्यावरणीय कारणों में प्रदूषण, आहार, तापमान, और अन्य पर्यावरणीय कारक शामिल हैं जो जीन की अभिव्यक्ति को प्रभावित करते हैं, इनमें से कुछ निम्नांकित है:

चित्रः जीन की संरचना

- प्राकृतिक चयन (Natural Selection):
 मानवीय विकास के दौरान, जो जीन अब जरूरी नहीं होते हैं, वे धीरे-धीरे निष्क्रिय हो जाते हैं। उदाहरण के लिए, मनुष्य के पूर्वजों के पास कुछ जीन थे, जो जंगली पर्यावरण में जीवित रहने के लिए जरूरी थे, जैसे तेज गंध पहचानने की क्षमता। लेकिन आधुनिक जीवन में इनकी जरूरत कम हो गई, इसलिए ऐसे जीन "स्यूडोजीन" (निष्क्रिय जीन) बन गए हैं।
- जेनेटिक ड्रिफ्ट: जेनेटिक ड्रिफ्ट का तात्पर्य है आनुवंशिक विचलन। एक ऐसी प्रक्रिया जिसके द्वारा आकस्मिक रूप से एलील आवृत्ति (gene frequency) में संयोगवश काफी कमी आ जाती है, आनुवंशिक विचलन कहलाती है। एलील किसी जीन का एक विशिष्ट रूप है, उदाहरण के लिए, एक जीन जो बालों का रंग निर्धारित करता है, उसके कई एलील हो सकते हैं, जैसे कि भूरे बालों के लिए एक एलील और काले बालों के लिए एक अन्य एलील। इस प्रकार छोटी आबादी में, कुछ एलील संयोगवश लुप्त हो रहे हैं। यह तब होता है, जब कुछ लोग ही अगली पीढ़ी को जीन प्रदान करते हैं, और बाकी जीन गायब हो जाते हैं।
- म्यूटेशन और डिलीशन: म्यूटेशन और डिलीशन, दोनों ही आनुवंशिकी में होने वाले परिवर्तन हैं। म्यूटेशन किसी जीन में होने वाले स्थायी परिवर्तन को कहते हैं, जो किसी जीन की संरचना या कार्य को बदल सकता है, जबिक डिलीशन एक या एक से ज़्यादा न्यूक्लियोटाइड (base) का डीएनए से गायब होना है। यानि कि जीन के कुछ हिस्सों का हटना (डिलीशन) भी जीन की संख्या को कम कर सकता है।
- आधुनिक जीवनशैली: आधुनिक जीवनशैली जैसे कि असंतुलित आहार, व्यायाम की कमी, और अत्यधिक तनाव के द्वारा स्वास्थ्य पर नकारात्मक या सकारात्मक प्रभाव पड़ सकता है, जिससे जीन सिक्रिय या निष्क्रिय हो सकते हैं, परिणामस्वरुप प्रोटीन का उत्पादन कम या ज्यादा हो सकता है। क्योंकि ये स्थितियां जीन की अभिव्यक्ति में बदलाव से जुड़ी हैं। इस प्रकार पर्यावरणीय प्रदूषण, रसायन, और तनाव की वजह से जीन की कार्यक्षमता प्रभावित हो सकती है। कुछ शोध बताते हैं कि रेडिएशन और केमिकल्स डीएनए में बदलाव ला रहे हैं।

3. जीन की कमी के नकारात्मक परिणाम

जीन की संख्या में कमी के दीर्घकालिक परिणाम मनुष्य के शरीर, स्वास्थ्य, एवं विकास पर बुरा असर डाल सकते हैं:

• स्वास्थ्य पर प्रभाव: यह समझना बहुत आवश्यक है कि जीन शरीर के लिए निर्देश की तरह होते हैं। वे प्रोटीन बनाने के लिए जिम्मेदार होते हैं, जो शरीर के विभिन्न कार्यों में महत्वपूर्ण भूमिका निभाते हैं। बीमारियों से लड़ना, स्वास्थ्य को बेहतर रखना जीन का प्रमुख कार्य है। ऐसी स्थिति में जब कुछ जीन खो जाते हैं, तो इसका मतलब है कि शरीर ने उन निर्देशों को खोने दिया, जो शरीर को ठीक कार्य करने में मदद करते हैं।

उदाहरण के लिए, कुछ दुर्लभ आनुवंशिक स्थितियों में, लोग एक या अधिक जीन खो देते हैं जो प्रतिरक्षा प्रणाली को विनियमित करने में मदद करते हैं। इसका मतलब है कि उनके शरीर को संक्रमण से लड़ना मुश्किल हो सकता है, और वे

वे प्रोटीन बनाने के लिए जिम्मेदार होते हैं, जो शरीर के विभिन्न कार्यों में महत्वपूर्ण भूमिका निभाते हैं। बीमारियों से लड़ना, स्वास्थ्य को बेहतर रखना जीन का प्रमुख कार्य है। ऐसी स्थिति में जब कुछ जीन खो जाते हैं, तो इसका मतलब है कि शरीर ने उन निर्देशों को खोने दिया, जो शरीर को ठीक कार्य करने में मदद करते हैं अधिक आसानी से बीमार हो सकते हैं। इसलिए, जीन खोना निश्चित रूप से कुछ बीमारियों से लड़ने की क्षमता को प्रभावित कर सकता है।

- आनुवंशिक विविधता में कमी: यदि जीन की संख्या कम होती है, तो आनुवंशिक विविधता (genetic diversity) में भी कमी आएगी। यह विविधता ही मनुष्यों को किसी दूसरे पर्यावरण के अनुकूल स्वयं को ढालने में सहायता करती है और विलुप्त होने से बचाती है, परंतु इसकी कमी से मनुष्य पर्यावरणीय बदलावों, जैसे जलवायु परिवर्तन या नई महामारियों, के प्रति कम अनुकूल हो सकता है।
- विकास पर असर: जीन की कमी मानव विकास की गति को धीमा कर सकती है। हमारे पूर्वजों ने कई वर्षों में अनुकूलन के लिए नए जीन विकसित किए थे, लेकिन अब यह प्रक्रिया धीमी हो रही है, जिससे मनुष्य के शारारिक एवं मानसिक विकास पर नकारात्मक प्रभाव दिखाई दे रहे हैं।
- सकारात्मक संभावना: दूसरी ओर, कम लेकिन अधिक कुशल जीन मनुष्य को अधिक अनुकूलित बना सकते हैं। जैसे, कम लेकिन बेहतर जीन के साथ भी हमारा दिमाग और शरीर जटिल काम कर सकता है।
- रोगों की उत्पत्तिः यदि मानव में जीन की यह कमी अनियंत्रित होती चली गई, तो भविष्य में आनुवंशिक बीमारियां बढ़ सकती हैं, और प्रजनन क्षमता पर भी असर पड़ सकता है।

4. जीन की कमी को रोकने के उपाय

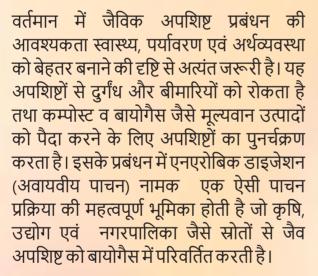
जीन की संख्या में कमी को पूरी तरह रोकना मुश्किल है, क्योंकि यह प्राकृतिक प्रक्रिया का

हिस्सा है लेकिन कुछ प्रयासों के द्वारा इस कमी को नियंत्रित किया जा सकता है:

- आनुवंशिक अनुसंधान: आनुवंशिक अनुसंधान मानव डीएनए का अध्ययन है, जिसके अंतर्गत जीन एडिटिंग तकनीक के द्वारा मनुष्यों के डीएनए में परिवर्तन किया जा सकता है। क्रिस्पर तकनीक जीन एडिटिंग की वह तकनीक है, जिसका उपयोग किसी जीव के जीन में परिवर्तन करने या उसके अनुवांशिक गठन में फेर-बदल करने में किया जाता है। इसके द्वारा मनुष्यों के खोए हुए जीन को प्राप्त या सुधारा जा सकता है।
- पर्यावरण संरक्षण: तेजी से बढ़ रहा प्रदूषण इंसान के डीएनए (डी ऑक्सी राइबो न्यूक्लिक एसिड) को नुकसान पहुंचा सकता है। डीएनए को होने वाली ऑक्सीडेटिव क्षति से मनुष्य में अनेक रोगों की शुरुआत होती है। इसलिए डीएनए को ऑक्सीडेटिव क्षति से बचाना

- मनुष्यों और किसी भी जीवित जीव के लिए अत्यंत महत्वपूर्ण है और इसके लिए पर्यावरण की रक्षा करना बहुत जरूरी है। अत: प्रदूषण और रसायनों को कम करके डीएनए को होने वाले नुकसान को रोका जा सकता है।
- स्वास्थ्य के प्रति जागरूकता: स्वस्थ जीवनशैली, जैसे अच्छा खानपान और तनाव प्रबंधन, हमारे जीन को स्वस्थ रख सकता है। जिन लोगों में जीन्स की गड़बड़ी के कारण हृदय रोगों से ग्रस्त होने का खतरा रहता है, वे स्वस्थ जीवन शैली और बेहतर खानपान अपनाकर मधुमेह और हृदय संबंधी बीमारियों का शिकार होने से बच सकते हैं।

वर्तमान में जीन की संख्या में कमी एक प्राकृतिक प्रक्रिया है, लेकिन इसके परिणाम हमारे भविष्य को प्रभावित कर सकते हैं। हमें विज्ञान और जागरूकता के साथ इस चुनौती का सामना करना होगा।


- एक भाषा अपने बोलने वालों के चरित्र और विकास का सटीक प्रतिबिंब है"
- "दूसरी भाषा का होना, दूसरी आत्मा का होना है"
- "हर कोई एक ही भाषा में मुस्कुराता है"
- "भाषाओं का ज्ञान, ज्ञान का द्वार है"

जैविक अपशिष्ट प्रबंधन के लिए परिपत्र अर्थव्यवस्था आधारित बायोगैस संयंत्रों का सततता विश्लेषण

पंकज गड़कोटी शोधार्थी,जल एवं नवीकरणीय ऊर्जा विभाग भारतीय प्रौद्योगिकी संस्थान रूडकी

एनएरोबिक पाचन प्रक्रिया में सूक्ष्मजीव ऑक्सीजन की अनुपस्थिति में विभिन्न स्रोतों से प्राप्त जैव अपशिष्ट को तोड़ते हैं, जिससे बायोगैस (एक नवीकरणीय ऊर्जा स्रोत) तथा डाइजेस्टेट (एक पोषक तत्वों से भरपूर उर्वरक) का उत्पादन होता है। यह प्रक्रिया अपशिष्ट प्रबंधन और ऊर्जा उत्पादन दोनों के लिए एक टिकाऊ समाधान प्रदान करती है। यह नवीकरणीय ऊर्जा का स्रोत प्रदान करने के साथ-साथ, ग्रीनहाउस गैसों के उत्सर्जन को कम करती है तथा कृषि में सिंथेटिक उर्वरकों का एक स्थायी विकल्प प्रदान करके पोषक तत्वों का पूनर्चक्रण करती है, परंतु यह

प्रो. सोजल के. ठेंगणे जल एवं नवीनीकरणीय ऊर्जा विभाग भारतीय प्रौद्योगिकी संस्थान रूड़की

तभी संभव है, जब बायोगैस संयंत्र स्थापित किए जाएं।

ग्रामीण एवं शहरी क्षेत्रों में बायोगैस संयंत्र की स्थापना अपशिष्ट प्रबंधन, स्वच्छ ऊर्जा उत्पादन एवं बेहतर विकास के लिए महत्वपूर्ण हैं। ये संयंत्र रसोई, कृषि और पशु अपशिष्ट जैसे जैविक कचरे को बायोगैस (एक स्वच्छ ईंधन) एवं उच्च गुणवत्ता वाली खाद में बदलकर प्रदूषण कम करते हैं। बायोगैस ग्रामीण और शहरी समुदायों को ऊर्जा निर्भरता से मुक्त करती है, प्रदूषण घटाती है, महिलाओं के स्वास्थ्य को बेहतर बनाती है तथा ग्रामीण अर्थव्यवस्था को मजबूत करती है।

परंतु अधिकांश क्षेत्रों में महत्वपूर्ण मौसमी तापमान भिन्नताएं होती हैं, इसलिए संयंत्र के अनुकूल प्रदर्शन को सुनिश्चित करने के लिए डाइजेस्टर के भीतर तापमान को स्थिर बनाए रखना आवश्यक है। विभिन्न तापीय प्रबंधन दृष्टिकोणों के तुलनात्मक तकनीकी-आर्थिक विश्लेषण में यह पाया गया कि थर्मल इंसुलेशन और ऑनसाइट बिजली व गर्मी की मांग के लिए संयुक्त ताप और ऊर्जा (Combined Heat and Power - CHP) यूनिट का संयोजन सबसे उपयुक्त तरीका है।

उपलब्धता और संभावनाओं के आधार पर, ग्रामीण क्षेत्रों के लिए जिन जैविक अपशिष्टों की पहचान की गई है, उनमें पराली एवं गोबर प्रमुख हैं; जबिक शहरी क्षेत्रों के लिए सीवेज कीचड़ तथा नगरपालिका का ठोस कचरा जैविक अपशिष्ट का अंश हैं। 300 टन प्रतिदिन की क्षमता वाले बायोगैस संयंत्र के लिए, ग्रामीण एवं शहरी रूपरेखाओं में क्रमशः US \$3.24 मिलियन तथा US \$1.30 मिलियन का सकारात्मक शुद्ध वर्तमान मूल्य (NPV) प्राप्त हुआ। ग्रामीण रूपरेखा में उच्च NPV का कारण ग्रामीण फीडस्टॉक में उच्च ठोस पदार्थ की मात्रा है, जिससे अधिक मात्रा में कम्प्रेस्ड बायोमीथेन गैस (CBG) एवं उर्वरक प्राप्त होते हैं। CBG, CO2 तथा

संयंत्र में हाइड्रोलिक अवधारण समय (HRT) गर्म जलवायु में कम से कम 15 दिन तथा समशीतोष्ण जलवायु में 25 दिन होना चाहिए। अत्यधिक रोगजनक इनपुट के लिए, ६० दिनों के HRT पर विचार किया जाना चाहिए। सामान्यतः, बायोगैस संयंत्र 30 से 38°C के मध्यरागी तापमान परिपथ में संचालित होते हैं। 50 से 57°C का ऊष्मारागी तापमान रोगजनकों का विनाश सुनिश्चित करेगा, लेकिन यह केवल संयंत्र को गर्म करके ही प्राप्त किया जा सकता है। हालाँकि व्यवहार में, यह केवल औद्योगिक देशों में ही पाया जाता है

ठोस उर्वरक की विक्रय कीमतें, फीडस्टॉक की क्रय कीमतें एवं छूट दर – ये दोनों CE आधारित रूपरेखाओं के लिए सबसे संवेदनशील पैरामीटर हैं।

संयंत्र के जीवन चक्र मूल्यांकन (Life cycle assessment-LCA) के परिणाम दिखाते हैं कि ग्रामीण और शहरी रूपरेखाओं के कुल जलवायु परिवर्तन प्रभाव (किग्रा CO2 समकक्ष/किग्रा CBG) क्रमशः 4.87 और 4.52 हैं। ग्रामीण क्षेत्रों में अधिक खाद की मात्रा, फीडस्टॉक परिवहन, झिल्ली पृथक्करण से मीथेन रिसाव एवं CHP उत्सर्जन उच्च उत्सर्जन के लिए जिम्मेदार हैं। उत्सर्जन वितरण यह दर्शाता है कि बायोगैस संयंत्र से रिसाव जलवायु परिवर्तन में सबसे बड़ा योगदान देता है, इसके बाद खाद बनाना और परिवहन आता है।

जब बायोगैस संयंत्र स्थापित किए जाते हैं, तो विशिष्ट बायोगैस उत्पादक जीवाणु समुदाय के स्थापित होने में कुछ समय लग सकता है। यह संयंत्र में सेप्टिक टैंक या किसी अन्य अवायवीय पाचक से अवायवीय कीचड को डालने में मदद कर सकता है। संयंत्र में हाइड़ोलिक अवधारण समय (HRT) गर्म जलवायु में कम से कम 15 दिन तथा समशीतोष्ण जलवायु में 25 दिन होना चाहिए। अत्यधिक रोगजनक इनपुट के लिए, 60 दिनों के HRT पर विचार किया जाना चाहिए। सामान्यतः, बायोगैस संयंत्र 30 से 38°C के मध्यरागी तापमान परिपथ में संचालित होते हैं। 50 से 57°C का ऊष्मारागी तापमान रोगजनकों का विनाश सुनिश्चित करेगा, लेकिन यह केवल संयंत्र को गर्म करके ही प्राप्त किया जा सकता है। हालाँकि व्यवहार में, यह केवल औद्योगिक देशों में ही पाया जाता है। यदि बायोमास का तापमान 15°C से कम है, तो गैस का उत्पादन इतना कम होगा कि आर्थिक दृष्टिकोण से बायोगैस संयंत्र का महत्व नहीं रह जाएगा। उच्च तापमान पर, न केवल मीथेन उत्पादन में वृद्धि हो सकती है, बल्कि मुक्त अमोनिया का उत्पादन भी बढ़ सकता है, जिसका पाचन प्रदर्शन पर निरोधात्मक प्रभाव हो सकता है

विगत रिपोर्टों के माध्यम से, यह पाया गया है कि दुनिया जैविक कचरे से गैस उत्पादन की क्षमता का केवल एक अंश ही उपयोग कर रही है, जो आज की गैस की मांग का केवल 20% ही कवर करता है। हालांकि आधुनिक समाज एवं अर्थव्यवस्थाएं अधिक बायोमीथेन और बायोगैस. सतत विकास के अतिरिक्त लाभों के साथ स्वच्छ ऊर्जा स्रोत, का उत्पादन करने के लिए कृषि अपशिष्ट, खाद्य अपशिष्ट एवं पशु गोबर से जैविक कचरे की मात्रा बढा रही हैं। बायोगैस आसपास के समुदायों के लिए बिजली और गर्मी का एक स्थानीय स्रोत प्रदान करता है तथा घरेलू उपयोग के लिए खाना पकाने का एक स्वच्छ ईंधन बन जाता है। बायोमीथेन में उन्नयन से संबंधित शुद्ध उत्सर्जन के बिना प्राकृतिक गैस के सभी ऊर्जा प्रणाली लाभ प्राप्त होंगे। सरकार भी विभिन्न अभियानों एवं विज्ञापनों के माध्यम से ऊर्जा. परिवहन, कृषि एवं पर्यावरण में लाभों को आवश्यक गति प्रदान करते हुए बायोगैस और बायोमीथेन के उत्पादन को निरंतर बढ़ावा दे रही है। विस्तृत अध्ययन और आईईए रिपोर्टों के माध्यम से यह निष्कर्ष निकाला गया है कि जैविक अपशिष्ट के लिए टिकाऊ फीडस्टॉक्स की उपलब्धता २०४० तक ४०% तक बढ जाएगी।

पेडा ने अपशिष्ट से ऊर्जा कार्यक्रम के तहत अपशिष्ट से ऊर्जा परियोजनाएं स्थापित कीं

पराली जलाने की समस्या को कम करने के लिए, पेडा धान की पराली का उपयोग संपीड़ित बायोगैस (सीबीजी) परियोजनाओं, बायोमास बिजली परियोजनाओं तथा धान की पराली पर आधारित बायो-एथेनॉल परियोजनाओं में करने के लिए हर संभव प्रयास कर रहा है।

भारत सरकार का नवीन एवं नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई), अपशिष्ट से ऊर्जा परियोजनाओं के लिए अपशिष्ट से ऊर्जा कार्यक्रम के अंतर्गत केंद्रीय वित्तीय सहायता प्रदान करता है। एमएनआरई, भारत सरकार द्वारा 30 जुलाई 2018 को जारी अधिसूचना के अनुसार, वर्तमान में 12000 घन मीटर प्रतिदिन क्षमता वाले कच्चे बायोगैस संयंत्र के लिए 4 करोड़ रुपये की राशि उपलब्ध है, जो प्रति परियोजना अधिकतम 10 करोड़ रुपये तक हो सकती है।

भारत सरकार, पेट्रोलियम एवं प्राकृतिक गैस मंत्रालय ने भी जून 2018 में जैव ईंधन पर राष्ट्रीय नीति अधिसूचित की है, जिसमें जैव ईंधन के उत्पादन के लिए परियोजनाओं के संवर्धन और विकास की आवश्यकता पर बल दिया गया है।

पेट्रोलियम एवं प्राकृतिक गैस मंत्रालय के अंतर्गत आईओसीएल, बीपीसीएल और एचपीसीएल जैसी तेल कंपनियां बीआईएस के आईएस 16087:2016 विनिर्देशों के अनुरूप संपीड़ित बायोगैस (सीबीजी) के विपणन की सुविधा प्रदान करती हैं और अपने एसएटीएटी (सस्ती परिवहन के लिए सतत विकल्प) कार्यक्रम के तहत 48.30 रुपये प्रति किलोग्राम (5% जीएसटी सहित) की दर प्रदान कर रही हैं।

पेडा ने एनआरएसई नीति-2021 के तहत निजी डेवलपर्स को बिल्ड, ऑपरेट एंड ओन (बीओओ) के आधार पर धान की पराली पर आधारित 23 कम्प्रेस्ड बायोगैस (सीबीजी) परियोजनाएँ आवंटित की हैं, जिनकी कुल क्षमता 262.58 टन प्रतिदिन है। इनमें से, पेडा द्वारा हैबोवाल बायोमेथेनेशन परियोजना एशिया का पहला १ मेगावाट उच्च दर वाला जैविक उत्पादन संयंत्र है, जहाँ मवेशियों के गोबर की मदद से सीएनजी और लगभग 6300 मेगावाट बिजली का सफलतापूर्वक उत्पादन किया जाता है। चालू होने

चित्र: बायोगैस संयंत्र की स्थापना संरचना

पर, ये परियोजनाएँ प्रति वर्ष लगभग 8.77 लाख टन धान की पराली की खपत करेंगी।

हालांकि कई सरकारी पहलों और नीतियों के बावजूद, देश में वाणिज्यिक स्तर पर बायोगैस संयंत्रों का प्रसार धीमा है। सामाजिक प्रभाव मुल्यांकन के माध्यम से बड़े पैमाने पर बायोगैस संयंत्रों की ताकत, कमजोरियाँ, अवसर एवं खतरे (SWOT) की पहचान की गई है। बायोगैस संयंत्रों की सामान्य ताकतों में कुशल अपशिष्ट प्रबंधन, अक्षय ऊर्जा उत्पादन, जैव-उर्वरक निर्माण, प्रदूषण एवं स्वास्थ्य जोखिमों में कमी शामिल हैं। यह पाया गया है कि सामाजिक समुदायों को बायोगैस तकनीक की ताकतों की बहुत कम जानकारी है। स्थानीय रोजगार सृजन, अनुसंधान एवं सामाजिक सहयोग में वद्धि, तकनीकी CBG तथा जैव-उर्वरक उपयोगकर्ताओं के लिए लाभकारी कार्यक्रम, इस तकनीक के प्रसार हेतु अवसर प्रदान करते हैं। कमजोरियाँ और खतरे बाजार में बायोगैस संयंत्रों के प्रसार में बाधाएं उत्पन्न करते हैं। ऐसी 24 बाधाओं की पहचान की गई है जिन्हें चार श्रेणियों में वर्गीकृत किया गया है और फिर अंकगणितीय औसत विधि का उपयोग करके प्राथमिकता दी गई है। आर्थिक बाधाएं सबसे महत्वपूर्ण हैं, इसके बाद राजनीतिक, तकनीकी और सामाजिक बाधाएं आती हैं। उप-श्रेणियों में, सबसे गंभीर बाधा डाइजेस्टेट के लिए बाजार की कमी है, इसके बाद गैस ग्रिड तक सीमित पहुंच तथा उच्च पूंजीगत व परिचालन लागतें हैं।

संदर्भ सूची:

- 1. https://sswm.info/es/arctic-wash/module-4-technology/further-resourceswastewater-treatment/anaerobicdigestion-%28small-scale%29
- 2. https://www.peda.gov.in/biogasconverting-waste-to-the-best-renewable

क्या आपके शरीर में प्लास्टिक है ?

दिव्येश बंसल

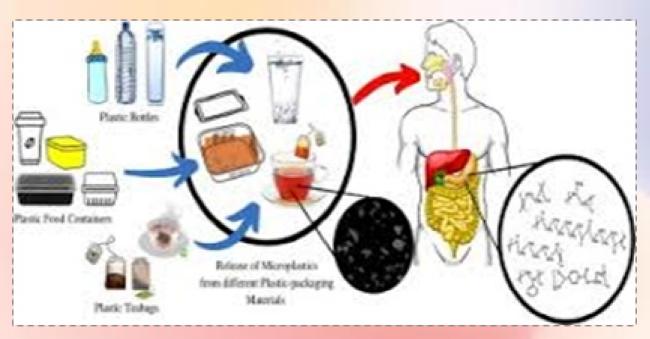
छात्र, कंप्यूटर विज्ञान एवं अभियांत्रिकी भारतीय प्रौद्योगिकी संस्थान, रुड़की

क्या आपने कभी प्लास्टिक की बोतल में पानी पीया है?

क्या आपका टिफिन प्लास्टिक का है ? क्या आप दूध प्लास्टिक की थैली में खरीदते हैं ? क्या आपने कभी बाहर का खाना मंगाया है जो प्लास्टिक में बंद था ?

क्या आपने पेपर जैसे दिखने वाले कप में चाय पी है ?

अगर आपका का जवाब इनमें से किसी भी चीज के लिए हाँ है, तो शायद ऊपर शीर्षक में पूछे गए सवाल का जवाब भी हाँ है, जानते हैं कैसे ?


चित्र: खाद्य पदार्थों में प्लास्टिक का अंश

प्लास्टिक आज कल की दुनिया में उतना ही जरूरी हो गया है, जितना कि जीने के लिए खाना। जहाँ देखों, जो देखों प्लास्टिक से ही बना है। परन्तु क्या आप जानते हैं कि प्लास्टिक में 'बिसफीनोल ए', 'डाएऑक्सीन्स', 'स्टायरीन' और न जाने कैसे-कैसे पदार्थ है, जो हमारे शरीर को बहुत नुकसान पहुंचाते हैं। ये सूक्ष्म कण के रुप में भोजन, पानी और हवा के माध्यम से शरीर में प्रवेश करते हैं और खून के प्रवाह में शामिल होकर मस्तिष्क, हृदय, यकृत तथा अन्य अंगों में जमा हो सकते हैं। हालाँकि शोधकर्ता अभी इन कणों के शरीर पर पड़ने वाले दीर्घकालिक प्रभावों का अध्ययन कर रहे हैं, लेकिन यह एक चिंता का विषय है।

जब हम खाने-पीने की चीजों को प्लास्टिक में बंद करते हैं। तो वही प्लास्टिक अपने छोटे रूप 'माइक्रोप्लास्टिक' और 'नैनोप्लास्टिक' के रूप में हमारे भोजन में चला जाता है और शरीर में जमा होने लगता है।

प्लास्टिक गरमी पाते ही पिघलने लगता है तथा भोजन में मिल जाता है। चाय का जो कप आपको कागज का लगता है उसमें प्लास्टिक की एक बहुत महीन परत होती है, जो गरम चाय से संम्पर्क में आते ही उसी चाय में मिल जाती है। इस प्रकार तैयार हो जाती है "प्लास्टिक चाय", प्लास्टिक के डिब्बे में डालिए गरमा-गर्म भोजन और 'प्लास्टिक प्रदेश' से आया यह भोजन आपके शरीर में प्रवेश कर जाता है। अगर आपका चॉपिंग बोर्ड" प्लास्टिक का है, तो शायद आपकी सलाद में भी प्लास्टिक को जलाते हैं, तो आपकी हवा में भी प्लास्टिक को जलाते हैं, तो आपकी हवा में भी प्लास्टिक है।

प्लास्टिक के प्रयोग से होने वाले नुकसान प्लास्टिक उत्पादों में जहरीले रसायन होते हैं जिन्हें इंसान आसानी से साँस के जिरए अंदर ले लेता है दरअसल, प्लास्टिक कचरे को निपटान के दौरान जलाने से ये रसायन हवा में फैल जाते हैं और पानी व मिट्टी को दूषित कर देते हैं, जो इसके संपर्क में आने वाले सभी लोगों के लिए जानलेवा साबित हो सकता है।

चित्रः भोजन के माध्यम से शरीर में प्रवेश करता प्लास्टिक

जब भी कोई समुद्र तट पर कूड़ा फेंकता है या अपने कचरे का उचित निपटान नहीं करता, तो वह पर्यावरण में जहरीले रसायनों के प्रसार में योगदान देता है। ऐसा इसलिए होता है क्योंकि समुद्री लहरें और सूर्य से निकलने वाला विकिरण पानी की बोतलों जैसे प्लास्टिक को तोड़कर सूक्ष्म प्लास्टिक उत्पन्न करता है। ये सूक्ष्म प्लास्टिक पर्यावरण में तैरते रहते हैं और प्लास्टिक उत्पादन में इस्तेमाल होने वाले रसायनों को अपने साथ ले जाते हैं और अंततः लोगों द्वारा भोजन, पानी और साँस के माध्यम से ग्रहण कर लिए जाते हैं। निम्नांकित बिंदुओं द्वारा इससे होने वाले नुकसान को सरलता से समझा जा सकता है:

- 'न्यू इंग्लैंड जरनल ऑफ मेडिसिन' के अनुसार अगर किसी की धमनियों में माइक्रो प्लास्टिक है तो उसे हार्ट अटैक आने की संभावना 4.5 गुना तक बढ़ जाती है।
- यही नहीं प्लास्टिक से कैंसर होने का भी खतरा बढ़ता है।
- यह माइक्रोप्लास्टिक और नैनोप्लास्टिक आपके हार्मोंस जैसा बर्ताव करके, आपके प्राकृतिक हॉर्मोंस को उनका काम करने से रोकते हैं। जिससे आपके शरीर के अंत: स्रावी कार्य यानी एंडोक्राइन फंक्शन में बाधा आने लगती है।
- प्लास्टिक आपकी चयापचय प्रक्रियाओं को भी अशांत करता है।
- साथ ही डायबिटीज, मोटापे और अनेकों बीमारियों का भी कारण बनता है।

प्लास्टिक के विकल्प का प्रयोग एकमात्र समाधान:

- 1. प्लास्टिक के बने बोतल और टिफिन का प्रयोग तुरंत बंद कर दें, इसकी बजाय स्टील का प्रयोग करें।
- 2. माइक्रोवेव में प्लास्टिक की बजाय, काँच के बर्तन का प्रयोग करें।
- 3. चाय या कॉफी पीने के लिए स्टील या काँच के गिलास का इस्तमाल करें।
- 4. प्लास्टिक बिल्कुल न जलाएँ, इसने वायु प्रदूषणभी रुकेगा।
- 5. सामान खरीदने बाजार जाएँ तो, कपड़े या पेपर बैग का प्रयोग करें।
- 6. हमारी त्वचा में सोखने की शक्ति होती है, तो कोशिश करें कि डिब्बा बन्द ब्यूटी प्रोडक्ट्स की बजाय, घरेलू नुस्खों को इस्तेमाल करें।
- 7. अपने आस-पास के लोगों को ज्यादा से ज्यादा जागरुक करें।
- 8. अपने परिवार के साथ हर दिन नीचे दी गई पंक्तियों को दोहराएं।

प्लास्टिक को हटाएंगे हम। स्वस्थता की ओर बढ़ते चले जायेंगे हम।।

संदर्भ सूची:

https://www.earthday.org/what-you-need-toknow-about-the-impact-of-plastics-onhuman-health/

हिंदी पखवाड़ा २०२५ के दौरान पुस्तक प्रदर्शनी एवं प्रतियोगिताओ का आयोजन

हिंदी पखवाड़ा २०२४ की झलकियां

लेखकों के लिए आवश्यक सूचनाएँ

ध्येय

मंथन अपनी राजभाषा हिंदी में मौलिक शोधपरक साहित्य को सामने लाने का भारतीय प्रौद्योगिकी संस्थान रुड़की का एक अभिनव प्रयास है। यह प्रयास सफल हो, इसके लिए आपका सहयोग अपेक्षित है।

विषयक्षेत्र

हमारा मूलभूत प्रयास राजभाषा के साथ-साथ विज्ञान और प्रौद्योगिकी का मौलिक एवं शोधपरक साहित्य हिंदी में ले आने का है। इसमें ज्ञान-विज्ञान के प्रायः सभी क्षेत्रों के मौलिक एवं शोधपरक साहित्य का स्वागत है; चाहे वह शिक्षा-शास्त्र हो, मनोविज्ञान, क्रीड़ाजगत, या फिर स्वास्थ्य हो।

प्रकाशन विवरण

अनुसंधान प्रवृत्ति की यह पत्रिका केवल उन्हीं रचनाओं पर विचार करती है जो क्षेत्रविशेष की उपलब्ध ज्ञान राशि में विस्तार करने वाली हों। लेख पठनीय, बोधगम्य तथा आवश्यक स्रोत-संदर्भों से युक्त होना चाहिए। वह सुबोध हिंदी में हस्तलिखित या यूनीकोड में टंकित किया हुआ होना चाहिए।

बारंबरता

वर्ष में दो बार

संपादकीय पता

मंथन, राजभाषा प्रकोष्ठ, भारतीय प्रौद्योगिकी संस्थान रूड़की, रूड़की, हरिद्वार, उत्तराखंड 247667 फोन: +91-1332-284468

मेल आईडी: <u>hindicell@iitr.ac.in</u> वेब पेज: www.iitr.ac.in/hindicell

कुल गीत

जयित जयित विद्या संस्थान, हिम गिरि श्रृंगों से अभिनंदित, गंगा जल करते कल गान। ॥ जयित ॥

शिक्षा आदर्शों में उन्नत, जीवन शिल्पी भू रचना रत, 'श्रमं विना न किमपि साध्यं' व्रत, यन्त्र कला कौशल अभियान। ॥ जयति ॥

जन जीवन प्रासाद उठाकर, सेतु बांध भू खण्ड जुड़ाकर, अंतरिक्ष में यान उड़ाकर, नव युग को देता आह्वान। ॥ जयति ॥

सर्जन हित जीवन नित अर्पित, धरा स्वर्ग शोभा कर निर्मित, वैज्ञानिक युग पट में मूर्तित, भू पर लाता स्वर्ण विहान। ॥ जयति ॥

नयी प्रेरणा से दीपित मन, नव स्वपनों से हर्षित लोचन, नए सत्य की उर में धड़कन, ध्येय राष्ट्र जीवन कल्याण। ॥ जयति ॥

-सुमित्रानन्दन पन्त

भारतीय प्रौद्योगिकी संस्थान रूड़की

संपर्क : राजभाषा प्रकोष्ठ, भारतीय प्रौद्योगिकी संस्थान रूड़की रूड़की, जिला हरिद्वार, उत्तराखंड, 247667 दूरभाष : 01332-284468; ईमेल : hindicell@iitr.ac.in