User Manual for DGX

(1) How to Login on DGX proxy server.

Now users have to login on 192.168.121.190 (DGX Proxy Server) with their same
credentials as they use to do on main DGX system.

For Example:

[m h admin_1cc@192.168.12

Welcome to untu 16 : S (GNU/Linux 4.4.0-142-generic x86_64)

admin_icc@dgxl-proxy:~%

After Login you need to go to your code location/directory or path as shown
below.

Here | am in my home directory where my scripts are resides. And a Slurm Job
Scheduler is running through which users has to submit their jobs.

admin_1ccid
Shome fadm1
admin_icc@
admin_icc@

admin_1cc@ Ls .)
adduser.sh script.sh ssh.tar test.sh test_tf 63.out

cmd simple.st test _tf 62.out test_tf _64.out
admin_icc@dgxl-proxy:~$

Slurm Overview

SLURM (Simple Linux Utility for Resource Management) is an open source, fault-
tolerant, and highly scalable cluster management and job scheduling system for large
and small Linux clusters. SLURM requires no kernel modifications for its operation and
is relatively self-contained. As a cluster workload manager, SLURM has three key
functions.

First, it allocates exclusive and/or non-exclusive access to resources (compute nodes)
to users for some duration of time so they can perform work.

Second, it provides a framework for starting, executing, and monitoring work (normally a
parallel job) on the set of allocated nodes.

Finally, it arbitrates contention for resources by managing a queue of pending work.

One daemon per node

Cluster-wide control daemon

Figure: SLURM Architecture

SLURM Commands for the User.

1. SBATCH: Submit a batch script to SLURM
sbatch < SCRIPT NAME >

2. SQUEUE: View information about jobs located in the SLURM scheduling queue.
2.1 SQUEUE is used to view job and job step information for jobs managed by SLURM.
squeue < JOB ID >

3. SINFO: View information about SLURM nodes and partitions. SINFO is used to view
3. partition and node information for a system running SLURM.
sinfo

4. SCANCEL: Used to signal jobs or job steps that are under the control of SLURM
scancel < JOB ID >

Sample SLURM Job Script

#1/bin/sh #SBATCH --job-name=tf_job_test

Job name #SBATCH --ntasks=1

Run on a single CPU #SBATCH --time=02:00:00

Time limit hrs:min:sec

#SBATCH --output=tf_test %j.out

Standard output and error log

#SBATCH --cpus-per-task=1

#SBATCH --gres=gpu:1

#SBATCH --mem=32GB

echo $CUDA_VISIBLE_DEVICES

NV_GPU=$CUDA_VISIBLE_DEVICES nvidia-docker run -t ${USE_TTY} --name
$SLURM_JOB_ID -user $(id -u):$(id -g) -rm -v /home/$USER:/home/$USER
nvcr.io/nvidia/tensorflow:19.04-py3 python -c 'import tensorflow as tf;
print(tf.__version__)'

Job Submission example through Slurm.

(1) Before Submitting Your job check the system environment. The system should
be in idle state as shown below.

admin_lcc@dgxl-pro B
admin_icc@dgxl-proxy sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

dgx* up infinite 1 idle 11trdgx
admin_icc@dgxl-proxy:~$

(2) After that verify if there any jobs are running on system. As shown below.

admin_i1cc@dgxl-pr :
adrnln_lcc[@c ¥1-proxy:- squeue -a

JOBI A \ NAME TIME NODES NODELIST(REASON)

admin_icc@dg:

(3) As shown above none of the job is running on the system. Now | have submitted
a sample job as shown below.

(4) Important Note: Before submitting your job through slurm every user has to
mention the memory value as suggested bellow (128GB). Whether your
program/code need lesser than 128GB or greater than 128GB in both condition

you cannot exceed the maximum value of 128GB. Otherwise the user’s job will
not run and will be queued.

#SBATCH --mem=128GB
Job submitted higher than 128 GB would be queued as below.

609 dgxslurm jo locuzPD 0:00 1 (QOSMaxMemoryPerlob)

admin_icc@dgxl-proxy:~$ ls

adduser.sh script.sh ssh.tar test.sh test_tf_63.out test_tf_76.0
cmd s simple.s test_tf_62.out test_tf 64.out test_tf_78.0
admin_icc@dg j

admin_icc@dg

admin_icc@dg

admin_icc@dg

admin_icc@d sbatch simple.sh
Submitted]

admin_icc@dgxl-p

(5) After submitting the job when you will check the status of your job, it should show in
running state as shown below.

admin_lcc@dgxl-prox
admin_1cc@dgxl-prox sgueue -a
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
79 dgx slurm_jo admin_ic R B:06 1 1itrdgx
admin_icc@dgxl-proxy:~$
admin_icc@dgxl-proxy:

admin_icc@dgxl-pro
admin_icc@dgxl-pro
admin_icc@dgxl-pro
admin_icc@dgxl-prox
JOBID NAME USER 5T TIME MNODES NODELIST(REASON)
admin_icc@dgxl-proxy:~%
admin_ 1cc@dgxl-proxy:~%

How to run docker and create own images.

(1.) User can create Dockerfile.
Example Dockerfile:

FROM ubuntu

RUN apt update && apt install -y cowsay
CMD ["/usr/lgames/cowsay", "Hello!]

(2.) User docker build command on Slurm. User must be inside directory where
Dockerfile available. Need to mention same on Slurm Script.

Example command:

cd /home/test/Dockerfile

docker build -t cowsay:v1 .

(3.) Use docker run command on Slurm.

Example Command:
nvidia-docker run -t ${USE_TTY} --name $SLURM_JOB_ID --rm cowsay:v1l

(4.) Use docker run command on Slurm.
Example Command:
nvidia-docker run -t ${USE_TTY} --name $SLURM_JOB_ID --rm cowsay:v1

User can pass comand during docker run. For example,
nvidia-docker run -t ${USE_TTY} --name $SLURM_JOB_ID --user $(id -u $USER):$(id
-g SUSER) --rm -v /home/test:/workspace nvcr.io/nvidia/tensorflow:18.07-py3 python -c

'import tensorflow as tf; print(tf.__ version__)'
python -c 'import tensorflow as tf; print(tf.__version__)'

Thank You

