Spotlight
Home
Faculty Profiles
Student Homepages
IITR Home
Arora Rajan
Rajan Arora Associate Professor rajanfpt[at]iitr.ac.in
Areas of Interest
  • Applied Mathematics, Partial Differential Equations, Different Solutions Methods of Partial Differential Equations
Professional Background
FromToDesignationOrganisation
2014On goingASSOCIATE PROFESSORIIT ROORKEE, SAHARANPUR CAMPUS
20092014ASSISTANT PROFESSORIIT ROORKEE, SAHARANPUR CAMPUS
Educational Details
DegreeSubjectUniversityYear
PhDMathematicsIIT Bombay2005
M.Sc.Applied MathematicsUniversity of Roorkee1998
Administrative Background
FromToDesignationOrganisationLevel
2013On goingOC, Hobbies ClubSaharanpur Campus
2013On goingMember, Time Table CommitteeSaharanpur Campus
20102014OC Reprography SectionIIT Roorkee Saharanpur Campus
20072013NSS, CO-COORDINATORIIT ROORKEE, SAHARANPUR CAMPUS
PHDs Supervised
TopicScholar NameStatus of PHDRegistration Year
Analytical and Numerical Studies of Shock Waves in Gasdynamics and Certain Problems of PDEsAMIT TOMARA2008
On Shock Waves Propagation in Gasdynamics and Some Problems involving Non-linear PDEsMohd. Junaid SiddiquiA2009
Numerical and Analytical Solutions of Some Non-linear Partial Differential EquationsSanjay YadavA2010
Analysis of Shock waves and other Non-linear Evolution EquationsAnoop KumarA2010
Analytical and Numerical Solutions of Certain Non-linear PDEsAnkita SharmaA2011
Solutions of Certain Non-Linear PDEs with ApplicationsHariom Sharma O2013
Refereed Journal Papers

1. Siddiqui M.J., Arora R., Singh V.P. (2017). Propagation of non-linear waves in a non-ideal relaxing gas. International Journal of Computer Mathematics. 1-13.

2. Siddiqui M.J., Arora R., Kumar A. (2017). Shock waves propagation under the influence of magnetic field. Chaos, Solitons and Fractals. Volume-97. 66-74.

3. Arora R., Sharma A. (2016). Similarity solutions of cylindrical shock waves in magnetogasdynamics with thermal radiation. Journal of Computational and Nonlinear Dynamics. Volume-11. Issue-3.

4. Siddiqui M.J., Arora R. (2015). An Exact Similarity Solution for Spherical Shocks in a Relaxing Gas. National Academy Science Letters. Volume-38. Issue-5. 433-435.

5. Sharma A., Arora R. (2015). Analytical and numerical solutions of two-dimensional brusselator system by modified variational iteration method. Advances in Intelligent Systems and Computing. Volume-336. 439-449.

6. Arora R., Yadav S., Siddiqui M.J. (2014). Similarity method for the study of strong shock waves in magnetogasdynamics. Boundary Value Problems. Volume-2014. Issue-1. 1-15.

7. Tomar A., Arora R. (2014). Numerical simulation of coupled MKdV equation by reduced differential transform method. Journal of Computational Methods in Sciences and Engineering. Volume-14. 269-275.

8. Arora R., Siddiqui M.J., Singh V.P.(2013). Similarity method for imploding strong shocks in a non-ideal relaxing gas. International Journal of Non-Linear Mechanics. Volume-57. 1-9.

9. Arora R., Yadav S. (2013). Traveling wave solutions of the generalized Boussinesq system by (G′/G)-expansion method. Canadian Applied Mathematics Quarterly. Volume-21. Issue-1. 1-8.

10. Arora R., Siddiqui M.J., Singh V.P. (2012). Wave interaction and resonance in a non-ideal gas. Chinese Physics Letters. Volume-29. Issue-12.

11. Arora R., Tomar A., Pal Singh V. (2012). Similarity Solutions for Strong Shocks in a Non-Ideal Gas. Mathematical Modelling and Analysis. Volume-17. Issue-3. 351-365.

12. Arora R. (2009). Asymptotical solutions for a vibrationally relaxing gas. Mathematical Modelling and Analysis. Volume-14. Issue-4. 423-434.

13. Arora R., Tomar A., Singh V.P. (2009). Shock waves in reactive hydrodynamics. Shock Waves. Volume-19. Issue-2. 145-150.

14. Arora R. (2008). Non-planar shock waves in a magnetic field. Computers and Mathematics with Applications. Volume-56. Issue-10. 2686-2691.

15. Arora R., Sharma V.D. (2006). Convergence of strong shock in a Van der Waals gas. SIAM Journal on Applied Mathematics. Volume-66. Issue-5. 1825-1837.

16. Sharma V.D., Arora R. (2005). Similarity solutions for strong shocks in an ideal gas. Studies in Applied Mathematics. Volume-114. Issue-4. 375-394.